ProviewR

OPEN SOURCE PROCESS CONTROL

Guide to Storage Environment

Version 6.1.5

Copyright (C) 2005-2025 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

2 Introduction

A task of increasing importance for the automation systems is to store process data. The
possibility to store large amounts of data has given rise to new functionality in terms

of development and optimization of processes, predictive maintenance, calculation of
models for simulation etc.

This document describes storage of process history in ProviewR and how this is configured.

3 Process data

Storing of process history data means that signals and other data is stored cyclically
in a database, and from there can be fetched to displayed in curves or analyzed in
other contexts, eg for predictive maintenance or process development.

The storage is configured with the object SevHist and SevHistObject. SevHist configures
storage of one attribute, and SevHistObject of a whole object. In the SevHist object
you state how often the value should be stored, and for how long.

The storage is handled by two processes, a client process, rt_sevhistmon, that collects
data and sends it to a server process, sev_server, that stores the data in the database.
The client process can send data to several different server processes, and the server
process can receive data from several different client processes, The client and server
process can run in the same node, or in different nodes. For test and troubleshooting
you can start a server process on a process station that stores data from its own node.
For larger amounts of data with storage over several years, you appropriately create

a dedicated storage station, that stores data from several nodes.

3.1 Client

rt_sevhistmon is the client process that collects the process values in one node and
sends it to the server. It's configured with a SevHistMonitor object in the node

hierarchy. Below the SevHistMonitor object you place a SevHistThread object, that
contains cycle time and server node. Each SevHist and SevHistObject object is connected
to a thread object and thus will stored on the node, and with the cycle time specified in

the thread object.

The thread object also contains a ServerThread attribute, by which the storage can be
directed to a specific thread in the server process. This can be used to spread the load
over different threads in the server process.

3.2 Server

The server process, sev_server, receives data from the client processes an stores it

in the database. If the database doesn't exist, it will be created with the required

tables. Then a handshake with the client processes is performed, where client processes
sends information about all the attributes and objects that should be stored. The cyclic
transfer of process data from the client process to the server process then starts.

The server process also can answer requests of history date for an attribute in a
specific time interval.

Data can be stored in different types of databases, MariaDB (MySQlI), Sqlite and HDF5.

MariaDB/MySQL

MariaDB is a clone of MySql that was created when MySQL was taken over by Oracle. They

should be compatible and exchangeable with each other. In recent Linux releases often
MariaDB is installed. Many configuration alternatives in ProviewR is still named MySQL
but should also be used for MariaDB.

MariaDB should be used for larger databases and for databases for permanent storage.

Sqlite

Sqlite is a small, fast database that doesn't require installation of a server. It can
be used for smaller databases for test and troubleshooting.

HDF5

HDF5 is a file format to store large amounts of data. The absence of journaling doesn't
make it suitable for permanent storage.

Alarms and events

Storage of alarms and events can be achieved with the SevHistEvent object. The object
contains an EventSelectList where hierarchies for alarms that should be stored are
specified.

4 Configuration

The storage process history for a single attribute is configured with a SevHist object,

and storage for a whole object with a SevHistObject object. Furthermore the client process
is configured with SevHistMonitor and SevHistThread objects, and the server process with a
SevServer object.

4.1 SevHist

Attributes that should be stored in the history database is configured with the
SevHist object. The attribute to store is specified in Attribute in the SevHist object.
The SevHist object is normally positioned below the object that is stored. If the
object contains an ActualValue attribute. this will automatically be inserted into
the SevHist object.

%1 PwR Navigator Yolume YolMerk1, sysansy on saturnusi - |E||5|

File Edit Functions View Options Tools Help

= Test $PantHier ~|| = MyHode $Hode =
[I | $PlantHier & Security $Security
E P2 $FPantHier % MessageHandler MessageHandler
@ Dve Dv & |0Handler I0Handler
@ DvT Dv <8 Backup Backup_Conf
0 b5a OpPlace
SevHist Analog value number 6 [0 HMaintenance OpPlace
= Description Analog value number & [RttConfig RttConfig
-+= Attribute Test- P2 - AvE.ActualValue OO Pc PlcProcess
-] ThreadObject MyHode- DsHistMonitor-100ms O c Rack_33AB
= StorageTime 0:15:00.00 O Pl Pt_Profiboard
= DeadBand 2.000000 0 WebHandler WehHandler
= Options 14 % WebBrowser WehBrowserConfig
= PosixTime Il <% StatusServer StatusServerConfig
= HighTimeResolution] [DsHistMonitor _SevHistMonitor
= ReadOptimized m n #i 100ms SevHistThread
= UseDeadBand [m] = Description
% Hist 3evHist Analog value number 6 = 3erverHode aristotle
O Av? Av = ScanTime 0.100000
O Fc PlcPgm @ 1s SevHistThread
@& Dvl Dv & 4s SevHistThread
e - =
{ | O d | *

Fig Configuration with SevHist, SevHistMonitor och SevHistThread objekt

4.2 SevHistObject

SevHistObject stores all the attributes in an object into a single table.

It is recommended to create a specific class for this purpose, as existing classes often
contains attributes that shouldn't be stored.

Server threads

By configuring threading of the server process, the performance can be substantially
increased as the load is spread on several different threads.

Threading is implemented for MariaDB/MySSQL.

The threads are configured in the client by stating a thread number in SevHistThread
object. A thread can be numbered with an arbitrary positive number, and all
SevHistThread objects with the same thread number will be handled by the same server
thread.

In the object graph of the SevServer object, the load of each thread is displayed, and
by altering the thread number in the SevHistThread objects, one can make sure that
no server thread is overloaded.

Server threads also have to be configured in the server process by setting the attribute
UseServerThreads in the SevServer object to 1.

Xtt copper-arrow (on copper-arrow)
File Edit Functions View Help

clela|ar]

Nodes SNodeHier =
= Tests7 tMode
<3 Security $Security
O OpPlaces tModeHier
= SEervers SModeHier
& MessageHandler MessageHandler
5 IOHandler IOHandler
5 Backup Backup Conf
5 StatusServer StatusServerConfig —
5 TrendConf DsTrendConf
= SevHistMonitor SevHistMonitor
B 15 SevHistThread
= Description
= ServerNode localhost
ServerThread
= ScanTime 1
= Status Y QCOM-5-5UCCESS, successful completior
= MNoOflterns 71
= ScanCount 784
= SendCount 788
= ErrorCount 0 ﬂ

Kl

Fig Configuration of thread number in the SevHistThread object.

Nodes-sysev-Serverprocesses-History (on sysev)
File Methods Help

OI=%

Description Historikserver

CurrentlLoad 0.13 Ya Database MySQL
MediumLoad 0.14 % WriteQuota 10.4 % DataStoreMsgCount 2033130791
MediumStorageRate 10186.2 MediumWriteRate 1060.9 ThreadQueuelimit 1000000
ServerThreads
Medium Medium

Thread Load (%) StorageRate StorageRate WriteRate WriteQuota (%) MsgCount LostCnt Queuehlloc
l:l 1 D 210207 3.19 1025.5 1025.3 109.1 10.6 76656144 305 0
l:l 2 |:| 209935 0.27 563.0 562.9 35.0 6.2 34977256 217 0
I:I 3 |:| 210195 0.72 147.7 147.7 14.1 9.6 76902409 156 0
I:I 4 |:| 209956 0.70 163.9 163.9 13.4 8.2 76930099 144 0
I:I 5 |:| 210186 1.86 411.2 411.2 43.9 10.7 76914152 260 0
l:l 3] |:| 209954 2.49 324.2 330.2 52.1 15.8 76772427 193 0
l:l 7 |:| 209934 1.70 467.2 466.9 32.3 6.9 76923361 308 0
l:l 8 |:| 209953 0.28 88.2 89.7 8.3 9.2 76932842 98 0
l:l 9 |:| 209936 6.46 1265.1 1264.2 114.2 9.0 76979220 607 0
l:l 10 D 209941 2.01 413.8 413.8 48.4 11.7 77025855 265 0
l:l 11 D 209952 0.68 158.7 159.7 21.6 13.5 TR937739 180 0
l:l 12 |:| 210185 0.25 596.9 596.8 35.6 6.0 75216439 285 0
I:I 13 |:| 209942 0.44 91.8 91.8 1.3 7.9 76934111 107 0
I:I 14 |:| 209937 1.29 347.3 347.3 24.8 7.1 76939565 231 0
|:| 15 |:| 209940 1.77 417.0 417.1 33.0 7.9 76926969 241 0
l:l 16 |:| 210184 1.05 333.4 333.3 18.9 5.7 76933690 171 0
l:l 17 |:| 209958 0.40 85.8 85.8 8.4 9.8 76939118 a0 0
l:l 18 |:| 209959 11.28 1261.5 1261.0 225.5 17.8 76903518 807 0
[119 [[] 209957 0.16 33.9 33.9 2.9 8.6 76938846 51 0

Fig Object graph for SevServer object displaying the server threads.

4.4 Deadband

Deadband can be configured on analog, digital and integer signals, and means the a certain
change of the value is required before a new value is stored into the database. By
setting a deadband the disk space used to store a signal can be substantially reduced.

The deadband is configured by setting Deadband and ReadOptimized in Options in the SevHist
object, and state the size of the deadband in the Deadband attribute.

+++ H1-Av5-Hist (on copper-arrow) + x
File Functions Help
= » ObjectMame Hist B
= }p Description
—+=} Attribute H1-Aw5. ActualValue
-{» ThreadObject Modes-Test57-5ervers-SevHistMonitor-1s
= p StorageTime 365 0:00:00.00
= } DeadBand 1.000000
= » Options 12
= p PosixTime 1
= } HighTimeResolution]
= } ReadOptimized]
= p UseDeadBand .|
= p DeadBandLinearRegr 1
= p DeadBandMeanValue 1
= p Parameter 1
= p Event M|
= p MeanValuel]
= p MeanValue2 D
= } Disable 1]
= p Trigger 0
B » Layout 0 E

4]

Fig Deadband configuration.

For deadband on digital signals, set Deadband to 0.5.

+++ H1-Dv1-Hist (on copper-arrow) - +

File Functions Help

5 » ObjectMame Hist B
= p Description
—+=} Aftribute H1-Dvl.ActualValue
-0 ThreadObject Modes-Test57-5ervers-SevHistMonitor-1s
= p StorageTime 365 0:00:00.00
= p DeadBand 0.500000
= » Options 12
= p PosixTime]
= } HighTimeResolution]
= } ReadOptimized]
= p UseDeadBand .'|
= p DeadBandLinearRegr]
= p DeadBandMeanValue]
= p Parameter]
= p Event |
= p MeanValuel]
= p MeanValue2 D
= p Disable 1]
= p Trigger 0 -
B » Layout 0 =
Kl [

Fig Deadband configuration for a digital signal

Deadband with linear regression

This is a two dimensional deadband that also works on ramps.

With linear regression a straight line is calculated from the latest store value, and

as long as no value deviates more than the deadband from the line, no new value is stored.
This will even more reduce the required disk space.

Fig Deadband with linear regression

Deadband with linear regression is configured by setting Deadband, DeadbandLinearRegr
and ReadOptimized in Options in the SevHist object, and supplying the size of the
deadband in Deadband.

T b
+++ H1-Av1-Hist (on copper-arrow) - + ¥
File Functions Help
5 ¢ ObjectName Hist 2]
= } Description
—+=} Attribute H1l-Avl.ActualValue
-{J» ThreadObject Nodes-Test57-Servers-SevHistMonitor-1s
= p StorageTime 365 0:00:00.00
= p DeadBand 1.000000
[» Options 76
= } PosixTime]
= } HighTimeResolution]
= } ReadOptimized]
= p UseDeadBand 1]
= p DeadBandLinearRegr 7]
= p DeadBandMeanValue 1
= }p Parameter]
= } Event W
= p MeanValuel D
= p MeanValue2 1
|=) Disable 0 |
= p Trigger 0 -
b Layout o =]
4l [

Fig Configuration of deadband with linear regression

Event triggered storage

By setting Event in Options in the SevHist object, it is possible to control when the
storage is performed. When Trigger in the SevHist object is set to 1, the current value
is sent to the server process. Trigger is reset when the value is sent.

4.7

4.8

#++ H1-Av4-HistEvent (on copper-arrow)
File Functions Help
= » ObjectMame HistEvent B
= }p Description
—=} Attribute H1-Av4.ActualValue
-{» ThreadObject Modes-Test57-5ervers-SevHistMonitor-1s
= p StorageTime 356 0:00:00.00
= p DeadBand 0.000000
[» Options 36
= p PosixTime 1
= } HighTimeResolution]
= } ReadOptimized]
= p UseDeadBand D
= p DeadBandLinearRegr 1
= p DeadBandMeanValue 1
= p Parameter 1
= p Event
= p MeanValuel]
= p MeanValue2 D
= p Disable 0
B » Layout 0 B
|1 | aaaaaaa | : |

Fig Configuration of event triggered storage

Meanvalue calculation of stored signals

The server process can perform a meanvalue calculation of a stored signal, and this is
configured by activating MeanValuel or MeanValue2 in Options in the SevHist object.

The server can make a calculation with two different times, and these are set in
MeanValuelntervall and MeanValuelnterval2 in the SevServer object. In SevHist.Options you
select which of these times the calculation should be executed with.

The meanvalue is stored in the item tree, and from there is can be referred from Ge graphs
and applications with the suffix . MeanValue', eg
'‘pwrNode-sev-H1-Avl.ActualValue._ MeanValue'.

Item tree

Each stored signal is represented of an item. All items are displayed in an item tree

that is placed under pwrNode-sev in the realtime database. In the items tree, the signals
are ordered in their original hierarchy, and the last received value is displayed. More
information about the items is displayed by clicking with Shift+Click on the value, or

with Shift+Arrow left on the keyboard.

Xtt copper-arrow (on copper-arrow)
File Edit Functions View Help

=lo|r|e|r]
| & |

= pwriode SNodeHier
5 System §5ystem
M active sMNodeHier
= sev tModeHier
4 HS sNodeHier
= H1 SModeHier
) Avl 5Block

ActualValue -97.6197
= Elements 0
= Description
= ObjectName VolTest57:H1-Avl
= MoOfAttr 1
= Attr ActualValue
= AttrType Type-$Float32
= TableMame 0000 _100 100 001 000000158 4
= ScanTime 1
B Options 332
= Deadband 1
= StorageTime 1:00:00.00
= Id 4
= ReceiveCount 15534
= WriteCount 2435
= WriteQuota 15.6753]

= MeanValue -93.5079

= StandardDeviation 2.26205

== LastTime 13-JUL-2021 15:19:30.63

= Value -97.6197 Ad|

MeanValueTime

13-JUL-2021 15:19:26.63

Kl

Fig An item in the item tree

Mounting of the item tree

The item tree is built of objects of type $Block and $BlockAttribute to recreate the

original hierarchy and object structure to some extent. By mounting the hierarchies under
pwrNode-sev on the top level you can also recreate the original object and attribute
names and use them for references in graphs and applications.

The mount is made with mount objects of type $MountDynObjects as the objects in the item
tree are dynamic objects.

When the mount is done, signals can be referenced with their original names. This makes
it easier to refer to the signals in graphs and applications.

4.10

4.11

PwR VolSqlite, pwrp on sqlite (on copper-arrow)
File Edit Functions View Options Tools Help

VAR E RS I E B 3 Y=Y

3 E 5G1 $MountDynObject | Nodes EMo
= Description
[= Object pwrNode-sev-5G1 |

& 552 tMountDynObject

K1 L] K1 1]

Fig Mount of hierarchy in the item tree

Refer to data in the item tree

Data in the item tree can be referred to with the suffix '.__'dataname". For example the
mean value for H1-Avl is referred to by

pwr Node- sev- H1- Avl. Act ual Val ue. __ MeanVal ue

If there is a mount of H1, pwrNode-sev is superfluous and the reference can be made with
H1- Avl. Act ual Val ue. __MeanVal ue

It's possible to fetch the value and subscribe to it from c++ and Python code. In Ge
graphs the value type should be added

Hl- Avl. Act ual Val ue. __ MeanVal ue##Fl oat 32

Here are some examples of other values that can be referenced

H1-Avl.ActualValue Last received value.
H1-Av1l.ActualValue. TableName Name to table where the value is stored.
H1-Avl.ActualValue. StandardDeviation Standard deviation for the mean value.
H1-Avl.ActualvValue. LastTime Time for last received value.

Plc programming

Item data can also be fetched in the plc program. As the data reside in dynamic objects
the GetExt objects has to be used, eg GetExtFloat32, GetExtBoolean etc.

In the example below, the momentary value for H1-Av1.ActualValue and the mean value
for H1-Av2.ActualValue are added and put into H3-Av3 that is a local object in the server
node.

+ H3-Plc (on copper-arrow)
File Edit Search View Functions Mode Help

Q&‘ﬁ?‘@ @%Q%‘ﬁ g}‘&g‘

b

= def

Ak

A‘D m‘

GetExtFloat32 H1-Av1 ActualValue | Add ~ stoav | H3-av3 | J ——
GetExtFloat32 H1-Av2. ActualValue._MeanValue I—— Addé I

Fig Plc code with item data

4,12 Sev export

Sev export makes it possible to export data to the sev server that doesn't need to
be stored in the history database, but nevertheless should be available to be displayed
in graphs and reports.

The export is configured with SevExport objects. A SevExport object exports one attribute.
As for the SevHists objects, it is the rt_sevhistmon process that collects the attributes

and sends them to the server node. In this case the receiver process is sev_import, that
is configured with a SevimportServer object in the sev server node. sev_import inserts
the value into the item tree from where it can be displayed in graphs or used in the

plc program.

PwWR VolSqlite, pwrp on sqlite (on copper-arrow)
File Edit Functions View Options Tools Help

S ERAE PN Yy ey

112
[t H2 $PlantHier Al & Nodes $hode | = |
4 Plc PlcPgm
= Avl A

= Description

—+= Aftribute H2-Av1.ActualValue

-] ThreadObject Nodes-DemoMode-Servers-SevHistMonitor-1s

[~ Options 2 :

= Event] _J

= MeanValuel]

= MeanValue2 D

= Disable a

= Trigger 0
| Av2 Av | -
d b | &]

Fig Configuration of export with SevExport

Mean value calculation

Also for exported attributes, a mean value calculations can be configured by setting
MeanValuel or MeanValue2 in Options in the SevExport object.

The server makes the mean value calculation with two different times that are stated in
the SevimportServer object, attributes MeanValuelntervall and MeanValuelnterval2.

In SevExport.Options is stated which on of these times the mean value calculation should
be made with.

The mean vaue is displayed in the item tree, and can be referred to from Ge graphs and
applicaions with the suffix '.__MeanValue', eg
'‘pwrNode-sev-H2-Av2.ActualValue._ MeanValue'.

Event triggered export

By setting Event in Options in the SevHist object, it is possible to control when the
storage is performed. When Trigger in the SevHist object is set to 1, the current value
is sent to the server process. Trigger is reset automatically when the value is sent.

Internal database structure.

MariaDB/MySQL and sqlite are SQL databases where data is stored in tables. In HDF5 an
hierarchy of groups are created where data is stored in datasets. The notation
with tables below applies to SQL but the structure of the datasets in HDF5 is similar.

The database is named 'pwrp__'systemname™ and contains the tables ‘items’, 'objectitems’,
‘'objectitemattributes’, 'sev_stat' and 'sev_version'. Furthermore there is one table for

each atttribute or object that is stored.

items

The items table contains information from all SevHist and SevHistEvents that it stored.

Name

id
tablename
vid

oiX

oname
aname
uptime
cretime
storagetime

deadband
options
scantime
description
vtype
vsize

unit

objectitems

Type
integer
varchar
integer
integer
string
string
datetime
datetime
integer

float
integer
float
string
integer
integer
string

Description

Identity.

Name of table with history data.

Volume identity of stored object.

Object index of stored object.

Object name.

Attribute name. If it's a SevHistEvent item, 'Events'.
Start time

Creation time for item.

Storage time in seconds. After this time the data will be
deleted.

Deadband.

Options.

Scan time.

Description of stored object.

Attribute type.

Attribute size in bytes.

Attribute unit.

The Objectitem table contains information about all SevHistObject that is stored.

Name

id
tablename
vid

0iX

oname
aname
uptime
cretime
storagetime

deadband
options
scantime
description

Type
integer
varchar
integer
integer
string
string
datetime
datetime
integer

float
integer
float
string

Description

Identity.

Name of table with history data.
Volume identity for stored object.
Object index for stored object.
Object name.

Not used.

Start time.

Creation time for item.

Storage time in seconds. After this tim the data will be
deleted.

Deadband.

Options.

Scan time.

Description of stored object.

objectitemattributes

To get a complete description of a SevHistObject, information of the attributes each
object contains is needed in addition to the content of objectitems. This is stored
in the objectitemattributes table with one row for each attribute.

Name Type Description

tablename varchar Name of table with history data
attributename string Attribute name.

attributeidx integer Attribute index.

attributetype integer Attribute type.

attributesize integer Attribute size in bytes.

History tables for individual attributes

Tables for storage of process values configured with SevHist objects.

Name Type Description

id integer Identity.

time datetime or integer Time.

ntime integer Nano seconds if high time resolution is configured.
value arbitrary type Process value.

History tables for whole objects

Tables for storage of process values for whole objects configured with SevHistObject
objects.

Name Type Description

sev_ id integer Identity.

sev__time datetime or integer Time.

sev__ntime integer Nano seconds if high time resolution is configured.
‘attributenamel’ arbitrary type Process value for first attribute in the object.
‘attributename2’ arbitrary type Process value for second attribute in the object.

History tables for alarm and events

Tables for storage of events configured with a SevHistEvent object.

Name Type Description

time integer Time.

ntime integer Nano seconds.

eventtype integer Event type.

eventprio integer Event priority.

eventid_nix integer Event identity, nix part.
eventid_birthtime integer Event identity, birthtime part.
eventid_idx integer Event identity, idx part.
supobject_vid integer Supervision object attrref, vid part.
supobject_oix integer Supervision object attrref, oix part.
supobject_offset integer Supervision object attrref, offset part.
supobject_size integer Supervision object attrref, size part.
eventtext varchar Event text.

eventname varchar Event name.

eventstatus integer Event status.

sev_stat

sev_stat contains statistics. Nowadays this information is also available in the
SevServer object.

Name Type Description

current_load float Current storage load in percentage.

medium_load float Medium storage load in percentage.

storage_rate float Number of stored items per second.
medium_storage _rate float Medium value of number of stored items.
datastorage_msg_cnt integer Number of storage transactions since startup.
dataget_msg_cnt integer Number of history data requests since startup.
items_msg_cnt integer Number of item messages.

eventstore_msg_cnt integer Number of storage messages for alarms and events.

sev_version

Contains the current version of the sev databse. the Sev version is incremented when
the database structure is modified and does not follow the version of ProviewR
releases.

Name Type Description
version integer Current version.

6

6.1

Databases

The most used database is MariaDb, but there is also support for Sglite and HDF5 with
limited functionality.

MariaDB/MySQL

MariaDB is the most used storage database in ProviewR. It also has full functionality
for deadband and server threads.

The configuration is made by setting Database to MySQL in the SevServer object.
Furthermore installation and start of mariadb-server is required on the server node.
The pwrp user also has to be created

For MariaDB

nysql
Mari aDB> create user pw p@ ocal host;
Mari aDB> grant all privileges on *.* to pw p@ ocal host;

For MySQL

mysql
mysql> grant all privileges on *.* to pwrp@localhost;

The recommended database engine is InnoDB that is default in later versions.

For small databases the standard configuration of MariaDB can be used, but for dedicated
server nodes there are som settings that should be made in the file /etc/mysql/my.cnf.

innodb_file_per_table
From maintenance view it is an advantage to have each table in a separate file. Then
disk space can be retrieved for deleted signals.

innodb_log_file_size

Transactions are first written into log files before they are inserted into the data

files. With larger log files the writing to the database files can be optimized and done
sequentially. On the other hand a recovery of the database will take longer time. The
size of the log files normally should be increased from the default value.

innodb_buffer_pool_size

Memory that is not used by the operating system, applications or MariaDB should be
allocated to the buffer pool. A calculation of the buffer pool size can look like this.

Let's say we have 16 Gb memory, 2 Gb is used by the operating system, the
innodb_log_file_size is 0.5 Gb and there should be space in the cache for this, ProviewR
needs 0.5 Gb, leave 1 Gb to other and the remaining 12 Gb can be configured for the
innodb_buffer_pool_size.

query_cache_type och query_cache_size
Tables are continuously modified so there is no reason to cache the result of requests.
Set these to 0.

Example of configuration

[nysql d]

innodb log file_size = 512M

i nnodb_buf fer_pool _size = 12G
innodb_file_per_table =1

i nnodb_f | ush_net hod = O_Dl RECT

query_cache_type =0
guery_cacne_si ze

1
o

Maintenance and troubleshooting

With the MariaDB client ‘mysql', the database can be inspected and modified. The name of
the database is 'pwrp__'systemname", eg 'pwrp__test57'. Below is an example of how to
look at the items table and data for an individual item.

> nysql
Mari aDB> use pwp_ test57;

Mar i aDB> sel ect onane, tabl enanme fromitens;

Vol Test 57: H5- Avl

Vol Test 57: H5- Dv1

Vol Test 57: H5- Dv2

Vol Test 57: H1- Avl

Vol Test 57: H1- Av2

Vol Test 57; H1- Av3AAD
Vol Test 57: H1- Dv1

Vol Test 57: H1-1v1

Vol Test 57: H1-1v2

Vol Test 57: H1- Av4

Vol Test 57: H18- SevHi st Event s
Vol Test 57: H1- Avb

C000_100_100_001_000000ab__1 |
C000_100_100_001_000000b7__ 2
0000_100_100_001_000000be__3 |
0000_100_100_001_00000018__4 |
0000_100_100_001_0000002e__5
0000_100_100_001_0000009f 6 |
C000_100_100_001_00000056__7 |
C000_100_100_001_0000005d__8
0000_100_100_001_0000005e__9 |
0000_100_100_001_0000013d__10 |
0000_100_100_001_00000ef3__ 11
0000_100_100_001_00000f96__ 12 |

Fom e e e e e oo s S +
| tine | val ue |
o e e e e e oo - TS +
| 2021-07-14 14:21:32 | 83.7721
| 2021-07-14 14:21:26 | 97.9997
| 2021-07-14 14:21:22 | 99.8689
| 2021-07-14 14:21:18 | 95.4521
| 2021-07-14 14:21:13 | 81. 552
| 2021-07-14 14:21:07 | 54.4918
| 2021-07-14 14:20:50 | -47.3081
| 2021-07-14 14:20:42 | -83.9247
| 2021-07-14 14:20:36 | -98.0545
| 2021-07-14 14:20:32 | -99.8544

2021-07-14 14:20: 28 - 95. 3687
2021-07-14 14:20:23 -81. 3886
2021-07-14 14:20:17 -54. 2567
2021-07-14 14:20:02 36. 1479
2021-07-14 14:19:53 80. 5102

I I
I I
I I
I I
I I
| 2021-07-14 14:19:47 | 96.7008
I I
I I
I I
I I

2021-07-14 14:19:43 99. 9982
2021-07-14 14:19:42 99. 8383
2021-07-14 14:19: 38 95. 2808
2021-07-14 14:19:33 81. 2193

o e e ee e oo Fome e o +

Sqlite doesn't require installation of any further server process, however the
functionality is limited. Support for server threads and deadband with linear
regression is missing.

Sqlite is configured by setting Database in the SevServer object to Sqlite.

The database file is created in $pwrp_db with the name pwrp__'systemname'.dbsqlite, eg
pwrp__test57.sqlite.

Maintenance and troubleshooting
The database can be examined with 'sqlite3'.

> sqlite3 $pwp_db/pwp__ test57.dbsqglite

sqglite> sel ect onane, tabl enane fromitens;

Vol Test 57: H1- Av1l| C000_001_001_002_0000004a__0
Vol Test 57: H1- Av2| C000_001_001_002_0000004c__2
Vol Test 57: H1- Av3| C000_001_001_002_0000004e__3
Vol Test 57: H1- Av4| C000_001_001_002_00000050__4
Vol Test 57: H1- Dv1] C000_001_001_002_00000052__5
Vol Test 57: H1- 1 v1] C000_001_001_002_00000054__6
Vol Test 57: H1- 1 v2| C000_001_001_002_00000056__7

sqlite> select tine,value from C000_001 _001_002_0000004a_ 0 order by id desc limt 20;
2021-07-09 16: 25: 10| - 26. 695
2021-07-09 16:25: 09| -20.593
2021-07-09 16:25: 08| -14. 409
2021-07-09 16:25: 07| -8. 16822
2021-07-09 16: 25: 06| -1. 89594
2021-07-09 16: 25: 05| 4. 38459
2021-07-09 16: 25: 04| 10. 6471
2021-07-09 16: 25: 03| 16. 8675
2021-07-09 16: 25: 02| 23. 0222
2021-07-09 16:25:01] 29. 0861
2021-07-09 16: 25: 00| 35. 0345
2021-07-09 16:24:59| 40. 8447
2021-07-09 16: 24: 58| 46. 4945
2021-07-09 16:24:57| 51. 9609
2021-07-09 16:24:56| 57. 2216
2021-07-09 16: 24: 55| 62. 2567

6.3

2021-07-09 16:24:54| 67. 0468
2021-07-09 16:24:53| 71.5718
2021-07-09 16:24: 52| 75. 815
2021-07-09 16:24: 51| 79. 7587
sqlite> .quit

HDF5

HDF5 doesn't require installation of any further server process, however the
functionality is limited. Support for server threads and deadband with linear
regression is missing.

HDFS5 is configured by setting Database in the SevServer object to HDF5.

The database file is created on $pwrp_db with the name ‘pwrp__'systemname", eg
pwrp__test57.hdf5.

The file contains the groups 'Dir' and 'Tables', where 'Dir' contains the datasets 'Cmn’,
‘ltems’, 'Objectltems’, 'ObjectltemAttributes’ and 'Stat'. Under 'Tables' there is one
dataset for each stored attribute or object, eg 'O000_001_001_003_0000004a__ 0',
'0000_001_001_003_0000004c__1'etc.

Maintenance and troubleshooting
It is possible to inspect the data file with Python by installing python3-h5py.

> pyt hon3

>>> jnport hb5py

>>> f = hbpy.File('/usr/pwp/test57/src/db/pwp__test57.h5 ,'r")

>>> |ist(f.keys())

["Dir', 'Tables']

>>> |ist(f['Dir']["Itens'])

[(0, b'"C000_001_001 003 _0000004a__0', 65795, 74, b'Vol Hdf5: H1- Avl', b' Actual Val ue',
0, 1625831988, 3600, 1., 76, 1., b'', 98306, 4, b'', 0),

(1, b' ©C000_001_001_003_0000004c__1', 65795, 76, b' Vol Hdf 5: H1- Av2', b' Actual Val ue',
0, 1625831988, 3600, 1., 76, 1., b'', 98306, 4, b'', 0)

>>> |ist(f[' Tables'][' C000_001_001_003_0000004a_ 0'][' Data'])

[(1625835966, 0, -93.87609), (1625835967, 0, -91.52528), (1625835968, 0, -88.812),
(1625835969, 0, -85.74749), (1625835970, 0, -82.343864), (1625835971, 0, -78.61555),
(1625835972, 0, -74.57546), (1625835973, 0, -70.24045), (1625835974, 0, -65.627655),

Extract history data

Here some examples are shown on how to extract an display history data.

Xtt

The History method in Xtt for an object will display a curve window with the process
history. The History method is activated from

- the popup menu for the object.

- the tool panel in the object graph.
- the menu in the object graph.

- the Xtt command 'open history'.

The curve window can also be opened with the 'Open Graph' method for a SevHist object,
or the 'Open Graph' method in the item tree.

_lnix

File Edit Functions View Help

.............................

Test $F|antH|er =
(| $PantHier
P¢ $PantHier
Dv6 Dv
Dw7¥ Dv

av

PicPgm | Object Graph

Dwé Dv .

DV3 Dv Hist Bvent...

Avl Av Block Events...

Ave Av Mote

fv3 av

n Tahle | Open Object

TZ Table ,

Pattem $PlantHier | RCNAVIGALOT
Wheel $PlantHier| Crossreferences |—
Demo $PantHier Help Class ﬂ
kdvshlncdn o kel

Collect

7.2

7.3

7.4

7.5

Ge graph

The SevHist component in the Ge editor is found under Analog/SevHist in the palette.
The component can display two history curves. It can be configured i two ways, either
it's connected to SevHist objects or the object identity for the history is suppled.

If the graph should be opened from a sev server node the second alternative has to be
used. If it's only going to be viewed on operator and process stations, the first
alternative can be used.

Multivariate Analyser
The Multivariate Analyser can read history for a number of items and display curves,
scatterplots, create models with linear regression and neural networks etc.

See the Multivariate Analyser chapter below.

Event Analyser
The Event Analyser read the history for alarms and events and display statistics and
curves.

See the Alarm and Event Analyser chapter below.

Python

The ProviewR Python runtime module, pwrrt, contains functions to fetch history
data from a sev server.

pwrrt can be execute on a node that has QCom contact to the history server.
Example

pwrrt.getSevitemData() fetches history for one attribute. It returns a tuple
with three elements, number of samples, a tuple with values and a tuple with times.

7.6

i nport pandas as pd
fromdatetine inport datetine
import pwrt

pwrt.init("appl")

result = pwrt.getSevltenData('l ocal host', '_(0.254.254.204: 68",

" Actual Val ue', '00:02:00', 'now , 1000)
for i in range(result[0]):
print(i, str(result[2][i])[:22], result[1][i])

Example

pwrrt.getSevitemsDataFrame() can request history for several attributes, and
returns the history in a structure that can be inserted into a pandas frame.
The first column contains the time, and the other columns the attribute values.

i nport pandas as pd
i mport pwrt

pwrt.init("appl")

oidlist =1]
attrlist =[]
i sobjectlist =[]

Append first attribute

oi dlist.append(' Q0. 254. 254. 204: 68')
attrlist.append(' Actual Val ue')

i sobj ectlist.append(0)

Append second attribute
oidlist.append(' Q0. 254. 254. 204: 69')
attrlist.append(' Actual Val ue')

i sobj ectlist.append(0)

result = pwrt.getSevltensDataFrane('|ocal host', oidlist, attrlist,

i sobjectlist, '00:02:00", 'now, 0.5, 1000)
colums = ("tine', 'Al', 'A2")

data = pd. Dat aFr ane(dat a=resul t)

dat a. col ums = col ums

print (dat a)

Mqtt server

Mqtt server in ProviewR makes is possible to retrieve history data on any
platform that has implemented the MQTT client.

The server replies to requests with different actions. The "history" action
requests history data for an attribute, and the "eventhist" action request
alarm and event history.

Example
This is a code example in Python with the MQTT client module python3-paho-mqtt.

History is fetched from the local MQTT server, topic 'proviewr/server',
The reply is requested to be sent to topic 'repl/history’, and the request
is to fetch history data for the attribute H1-Av1.ActualValue for the
last 15 minutes.

#!/ usr/ bi n/ pyt hon3

#

import paho.ngtt.client as ntt
i mport sys

import time

fromdatetine inport datetine

i mport json

import matplotlib.pyplot as plt
fromdatetine inport datetine

def on_message(client, userdata, nessage):
data = json. | oads(str(nessage. payl oad. decode("utf-8")))

#

Convert time strings to datetine objects
t =]
for dt in data['tine']:

t. append(datetinme. strptine(dt+' 0000',

Plot the curve, use drawstyl e=' steps-pre

plt.plot(t, data['values'], label="Diff")
plt.show)

Connect to MJIT server

client = ngtt.Client('Aristotle')
client.usernane_pw set('pwp', ' pwp')
client.on_message = on_nessage
client.connect('local host")

#

Subscribe to reply

client.subscribe("repl/history", 1)

#

client.publish('proview/server',

""attribute":"Actual Val ue","front:"0:15:0","to"

Send history request

' og- Y- % % 9V UB. % '))

for digital signals

"{"action":"history"," \\

reply":"repl/history","server": "l ocal host", "object":"Hl- Av1"," \\

for i in range (0, 3):

print("Loop");
client.loop start()
tinme.sleep(l)
client.loop_stop()

" now', "maxrows": 2000} ")

8 Multivariate analyzer

With multivariate analyzer it is possible to view and analyze process history data and
logged data. It is also possible to linearize and transform the data and apply machine
learning tools as linear regression and neural networks that can be used in models and
MPC controllers.

8.1 Dataset

A dataset contains data ordered in columns and rows. The first column is the sample time,
and the next columns contains measured data for process variables. The data can be fetch
from a sev server, generated by the Xtt logging function or read from a csv-file.

|'- , temp32.dat N o X

File Edit View Functions Help

ANIRVAIFICERIN=

Dataset 5 X 491

[~ Al H78-TemperatureControl3-ZonTempl.Value ActualValue
[A2 H78-TemperatureControl3-Power ActualValue

A3 H78-TemperatureControl3-ZonTemp0.Value.Actualvalue
[~ Ad H78-TemperatureControl3-ZonTemp2 Value ActualValue

[~ A5 H78-TemperatureControl3-EnvTemp.Value ActualValue

Fi-g Dataset

Sev server

Data is fetch from a sev sever from File/Import from server in the menu. The server host
name and an optional item filter is supplied. The items that matches the filter are then
displayed and items that should be part of the dataset can be selected. Finally start

and end time is entered and the data is fetched and inserted into the dataset.

From 00:05:00
To now
Interval 1.0

Max 500

Read DataSet

[~ VolOpg7:H1-Dvl.ActualValue
[~ VolOpg7:H1-Dv2.ActualValue
VolOpg7:H1-Dv3.ActualValue
[VolOpg7:H1-Avl.ActualValue
[~ VolOpg7:H1-Av2 . ActualValue
VolOpg7:H1-Av3. ActualValue
¥ VolOpg7:H1-Motorl.Motor. TempSensor.Value. ActualValue
¥ VolOpg7:H1-Motorl.FrequencyConverter. ActSpeed.ActualValue
¥ VolOpg7:H1-Motorl FrequencyConverter RefSpeed.ActualValue

[~ VolOpg7:H1-Motorl.Contactor.Order.Actualvalue

Fié Fetch data from sev server

Xtt logging

Parameters are collected and inserted into a logging entry, and to get the correct time
format, 'Format' is set to 1. When the logging is executed, the analyzer can be opened
from the 'Analyze' button in the logging entry.

>

8.2

File Edit Functions WView Help

G © IS N R

') | 1 | I H H

Logging entry 1
= Active 4]

= Insert collected parameters
- start logaing

= Stop logging

= store settings
=

=

=

Rastore settings
Show curve
Analyse
Secantima (ms)
Log file

200
rit_loggingl.rtt_log -

Tyvpe 1
Format
- BufferSize 100
= FullBufferstop 0
- Shorthame i}
—_ Condition
- Parameterd H1-&1.Actualvalue
—_ Parameterl H1-w2.Actualvalue
- Parameter2 H1-&3.Actuahvalue

Fig Xtt logging

csv file

Data can be read from csv files with format displayed below. The first row is a header
row with "Time' and the name of each parameter. The next rows contains the time and the
parameter values at this time. The file is opened from File/Open in the menu.

Ti me, H78- Tenper at ur eCont r ol 3- ZonTenpl. Val ue. Act ual Val ue, H78- Tenper at ur eCont r ol 3-

Power . Act ual Val ue, H78- Tenper at ur eCont r ol 3- ZonTenpO. Val ue. Act ual Val ue, H78- Tenpera
tureControl 3- ZonTenp2. Val ue. Act ual Val ue, H78- Tenper at ur eCont rol 3- EnvTenp. Val ue. Ac
t ual Val ue

2019- 05-13 09: 25:16. 11, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019- 05- 13 09: 25: 16. 62, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019- 05-13 09:25:17.12, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019- 05- 13 09: 25:17. 62, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019- 05- 13 09: 25:18. 12, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000

Plots

A number of different plots can be made, for example scatterplot that shows the
relationship between two columns, or correlation heatmap that displays the correlation
between columns with colors. Dark red is high correlation and dark blue high negative

correlation while light tones are low correlation.

]
E204 02824 ME2604 Ox2e3d

400

X0

B

1%25!14 25 2604 (63 (02704 (92734 (2604 092034

g e

DO2Tod 92734 DRIE04 92834 300l

EF04 02824 ME2604 O0x3eEd

#€>2+Q=8

DaTod (93734 DIEOd 92834 mIo0d

x=00:27:28 y=245.334

Fig Plot

L1]
L]
1m i .
LY - -
Em — i R "
. I
i - -
9w
-]
E § £ -

#€I+Q=H

Fi-g Scatterpl_ot

i

8.3

8.4

#€2+Q =B

I;ig Correlation heatmap

Edit data

The dataset can be edited with a number of functions

- Split will split the dataset into two datasets.

- Clip will pick out a portion of the dataset.

- Join will concatenate two datasets.

- Multiply will create a dataset where the current set is repeated a number of times.
- Move up and down will change the order of the columns.

Transform data

Creating models with Linear regression requires that the columns in the dataset have
linear dependencies. Often this is not the case. The level in a cylinder tank for example
has not a linear relationship to the in and out flow, but to the integral of the in and

out flow. After an integration of the flow columns there will be a linear relationship

and the linear regression can be performed.

Convert column

There are a number of functions to transform the data of a column
- Norm. Not yet implemented.

- Square. Calculate the square of each row.

- Squareroot. Take the square root of each value.

- Exp. Exponential function.

- Log. Logarithmic function.

- Integral. Time integral.

- Derivate. Time derivate.

- Curve. Linear interpolation from a table specified in a csv file with data points, eg
0,0

30,10

70,90

100,100

- Shift. Values in the column will be shifted forward or backward. The number of positions the values will be shifted a

N Convert Column =lE) e
Norm

Square

Squareroot

Exp

Log

Integral

Derivate

Curve Browse

Shift

Apply Cancel

Fig Convert column alternatives

Add column

Add column will in most cases transform the data of one or two columns and put the
transformed data in a new column.

- Copy. Make a copy of the selected column.

- Norm. Not yet implemented.

- Square. Calculate the square of each row.

- Squareroot. Take the square root of each value.

- Exp. Exponential function.

- Log. Logarithmic function.

- Integral. Time integral.

- Derivate. Time derivate.

- Add. Add the two selected columns.

- Sub. Subtract between two selected columns. The order of the columns in the dataset
is of importance here. The lower positioned column will be subtracted from the higher
positioned column.

- Multiply. Multiply the two selected columns.

- Divide. Division of the two selected columns. The higher positioned columns will be
divided by the lower positioned.

- Curve. Linear interpolation from a table specified in a csv file.

- Constant. Will create a column where all rows has the specified value.

- Shift. Values in the column will be shifted forward or backward.

8.5

Add Column

Copy

MNorm
Square
Squareroot
Exp
Log
Integral
Derivate
Add

™ Sub

I Multiply

I Divide

Curve Browse

Constant

Shift

Apply Cancel

Fig Add column alternatives

Formula

The transformation of a dataset can contain several steps, and when the transformation is
finished, the sequence can be stored as a formula and then be applied on other samplings
of the same parameters. The formula is saved from 'File/Save Formula' in the menu, and
applied from 'File/Apply Formula'.

Linear regression

Linear regression will create a model where one parameter, y, can be calculated from a
number of input values x1 - xn. y is supposed to have linear dependencies of the input
values, and the formula is

y=a0+al*xl+a2*x2+..+an*xn

where a0, al, ..., an will be calculated.

If the dependencies are not linear they first have to be linearized with the

transformation tools described above. When the model is used in runtime, the process
values have to go through the same transformation before they are used in the regression

model.

Lasso and Rigde regression are variants of linear regression that are also implemented.

8.6

Linear Hegression lewveld. dat

Soone [} 05788
ntercept 56072
niegralVolOpg 7 Demo-Process-LevelControd-CV L Actuator. Crder Actualv'alue) 0000930
ntegral{Const{1.0)) £.027980
1.0
— Al
0.3 — Motk
0.0
26 08°50 76 09:51 26 09:52 76 09°53 26 09°54 26 09°55 26 08756 26 0957 26 09°SA 26 09:59 26 10:00
ons
0.00 —_—
=005
28 05,50 26 09.51 26 0952 26 09.53 26 09,54 28 09,55 26 (9.56 26 0957 28 05,508 26 09.59 26 10.00
— [
#€»PQ=0

Fig Linear regression

MLP regressor

MLP (Multi Level Perceptron) is a neural network with an input layer, a number of hidden
layers and an output layer. Each node in the hidden and output layers is a neuron that
uses a nonlinear activation function. The MLP uses a learning technique called
backpropagation.

Before the the training can start, setting for the MLP like number of hidden layers and
layer sizes, activation function etc has to be set.

MLP Regressor flow2.dat

File Help

Salver adam — |
Activation relu — |

Max Iterations IW
Hidden Layer Sizes [20 20 20 0 0
Alpha 0.0001

Betal 09
Beta2 (0.998
Learning rate canstant _al
Initial learning rate W
Tolerance 0.0001
Verbose True —

Fi-g MLP regressor settiﬁgs

From File/Create Model in the menu, the training is started. When it's finished, the
score is displayed and the model values are plotted with the process values. The model
can be written to file with File/Export Model and then used by a MPC controller or model
object.

MLUF [Megressor fows, dal

Score 0,950

1.50
125
1.00
— i

LN]

050

"IN N

154701 154731 154801 1504631 1549901 154931 155001

ﬂiﬂﬁgg znom ract, x=15:46:48 y=1.0627

Fi-g Training result

Alarm and event analyser

The alarm and event analyzer can fetch alarm from the sev server, the eventlog or
eventlist, and display statistics and plots over the alarm situation. A number of filter
functions are available to pick out event of a specific type or priority, or show event
from a specific sup object.

File Edi Vew ke

K48 VI X||l=

Dalasst 5707 rows

Tima Trpe PriTaxt Mame Supdbjoct] Bt -
20190923 16:28:15 InfaSurcess Mode up perse1 Koderapg? _00.1.1.24: 109716642 |E5816, 1)
B010-09-23 16:24:47 SyslwmAlam & Syuleen slalos wion, node pawe5E-1 Hulw-upy? _00.1.1. 240005272 -E48 |E5816, 2)
[o18-08-23 16:25:54 Infabucsesy Node up parki-l Koder-apg? _00.1,1.24:10# T 368: 848 l&3818, 1)
M1019-09-23 16:26:20 alarm & Biam 1 H2-Dvl 00.1.1.24:136 185816, 2)
0100023 16:26:22 Alarm A a2 H2-Dvz _00.1.1.24:027 |&5816, 3)
H010-00-23 16:26:22 Reurn a 1wl 00,11, 24:106 |E5E16, 4)
Wzo10 09 23 16:26:23 alarm & Bhrm ¥ HI Dvx _00.1.1.24°128 183816, 5
¥ 2019:09-23 16:26:23 Return A H2Dvz _00.1.1.24:027 |E5E816, 6)
Wiov-uu-s 1nizniza Alarm A Bamm & W _ON.1.1.24:00% [eam1n,)
A 2018-09-23 16:26:24 Aeturn A h‘ Lra] _00.1.1.24:000 le3818, B)
Wz019-09-23 16:26:25 Alarm & Bam % H2-DvS 00.1.1.24:1%0 |85816, 9)
& N0-09-23 VR:2R:25 Npsuirn A 0D 00114 |ESRTE, 100
.101 0-00-25 16:26:28 Systemilarm & Sysbes slabus errer, node paeis-1 Raderapg? _00,1,1, 24-10@5 27 640 [&5@18, 11]
Wzo13-09-23 16:26:26 alrm & Returred alarm G H2-Dvii _B0.1.1.24171 1&3816. 121 R
H2019:09-23 16:26:28 Return A H2Dv5 _00.1.1.24:130 |E5816, 13
Oro1e-00-23 16:26:27 ilarm B @ alaen T H-DwT _00.1.1.24:138 |E5&16, 14]
A 2019-09-23 16:26:27 Aeturn L] WDl 00.1.1.24:131 |#3818, 15
DKIIB 09-23 16:26:28 Alarm E Balm g H2-DvE 00.1.1.24:140 |E5816, 16
Sk 1010-00-23 16:26:28 Return B HI-DwT _00.1.1.24:038 |E5E16, 17
Wi010-09-23 16:26:29 Alarm C Chlamg -l 0011 4004 |&5816, 10
A 1019-09-23 16:26:29 Return B H2-DvE 00.1.1.24:140 | #3816, 19
B2019-00-23 16:26:30 Alarm C CAlare 10 H2Dw10 _00.1.1.24:044 |E5E816, 207
ok 3010-08-23 16:26:30 Return [LFRE] 00,11, 24:043 |E5&16, 21)
zo19-09-23 14:26:31 Alarm O DAamlil H2-Dv1l _00.1.1.24:040 #3818, 22
3 2019:09-23 16:26:31 Return c H2Dv10 00.1.1.24:144 |E5816, 21
Wra10-00-23 16:26:33 Hilarmm O DMl 12 H2-Dwld _B0.1.1. 24048 |£5816, 247
A 2019-09-23 16:26:33 Neturn o LER Y 00,11 240048 |&3818, 25
» 1019-09-23 16:26:33 Ak B H2-DvE 00.1.1.24:140 83816, 26
[J2019-09-23 16:26:34 Infa irifo 1% H2Dw13 _D0.1.1.24:150 |E5816, 27)
ok 3010-08-23 16:26:34 Reurn o LFR i E 00,11, 24140 |E5&16, 18]

Fig Alarm and event analyser

Example of plots are the 'Event frequency histogram' that show the most frequent alarms,
and 'Not returned alarms' that shows the number for concurrent alarms as a function time.

Freguenc

Event frequency

I~
=3
=
e wn

Info 13
InfeSuccess 16

=]
-]
&
Y
=]
=
g

Previous Mext 1-30 (277) Cizplay Mamie

#€IPA=n

Fig Event frequency histogram

) 3 Ko returrsd alima
1
" | [
. | [
10 L — i
— ks
B - ;
—t
8 —
P
z
0
WL w2z Wz 10234z wam e
€ +QEE —

Fig Not return alarms

10

Storage station configuration

A storage station is generated as a process or operator station by installing the pwrrt
package.

Communicaton with process stations

A storage station can serve a plant with several process stations that belongs to different
projects with different version. For this reason the storage station normally doesn't have
nethandler connections but QCom only connections.

This is configured by creating FriendNodeConfig objects for all nodes that the storage

station should have contact with, and set QComOnly in Connection. If the storage station

is placed in a project with process stations, you set QComAutoConnectDisable in the BusConfig
object. Then the links between nodes in the projects are configured with FriendNodeConfig objects.

Upgrading

Note when upgrading sev station from versions before 5.8

- The pwrsev package is discontinued since V5.8.0 and the pwrrt package should be used instead.
- The node should be configured with a NodeConfig object instead of SevNodeConfig.

- The root volume should be configured with a RootVolumeConfig object and edited.

	
	
	Introduction
	Process data
	Client
	Server

	Configuration
	SevHist
	SevHistObject
	Server threads
	Deadband
	Deadband with linear regression
	Event triggered storage
	Meanvalue calculation of stored signals
	Item tree
	Mounting of the item tree
	Refer to data in the item tree
	Plc programming
	Sev export

	Internal database structure.
	Databases
	MariaDB/MySQL
	Sqlite
	HDF5

	Extract history data
	Xtt
	Ge graph
	Multivariate Analyser
	Event Analyser
	Python
	Mqtt server

	Multivariate analyzer
	Dataset
	Plots
	Edit data
	Transform data
	Linear regression
	MLP regressor

	Alarm and event analyser
	Storage station configuration

