FProviewR

OPEN SOURCE PROCESS CONTROL

ProviewR redundancy

2020 08 26

Copyright © 2005-2025 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Table of Contents

INETOAUCTION. ..ttt et ettt e st e e bt e s st e e bt e st e e bt e easeeaaeeseabeeesanseeesanreeenans 5
UpPdate Of dat@base........cocveiiuieeiiiieeieeeeee ettt ettt et e st e e bt e s aba e e s sbe e e s nbaeesabaeenans 5
PACKEL. ..ttt ettt ettt e et eeh et st e et e et e e a bt e e e nn e e e s anneeeenreeeaane 6
I 10 (<38 o 1= Tl <] PSPPSR 6
TTANSTET SEQUEIICE. ... eeeeveetieeieeiie et et e et et e ete et essteebeessseesseesssassseesssessseesssesssaessssesenssseesnsseeennnsns 6
EVENt NANAIINE.......veiiiiiiiieeeieeee ettt ettt e st e e s te e e s be e e s abeeesabeeeabeeebaeeebaeeensaeennnaaaaeenn 7
REACOMIL ...ttt et b et st s bt et s bt e s bt et e sat e bt et e eseenbesasesneesaneenas 7
FAIl OVET ...ttt ettt e st e bt e s a b e e b e e e st e e bt e s abe e bt e e st e e beeearaeeenns 7
Operator station COMIMUIICATION.ceiiirrteeeeriieeerertteeeeerteeeerreeeeeeerreeesesnraeeeeessaneessesesssnnmsnrrsrnreeeeeees 7
/Ot et h ettt h e et e h e sh et e e a e e bt e beea e e bt et e eatenbeebesnteebeeeas 8
IMOADUS TPttt ettt e s e et esat e e bt e s st e s beesateebeesabessbeeeenseeenane 8
PSSO000......e ettt ettt ettt sttt ettt et sat e b et a e e bt et e e at e bt et e at e bt et e et e naeeearees 8
CONTIGUIALION. ...ecuvieeieeiieeie ettt ettt e et e st e e teesteeebeesseeesbe e saessseesseesssaessesssaeseassseesaessseenseesnnn 8
PriMAry NOGE. ...c..eeeiieiiiiieitee ettt ettt s et e st e bt e st e e s bt e st e e seesabee st essseesseesasaenseaesans 8
SECONAATY NOGE.ceiiiiiiiiiiiite ettt et e et e e s te e s s teessabeesssbeeessbeessseesssseesssaesssseesssseesssnsnes 8
PIC thread PACKETS.......eeciieeeiieeeiee ettt ettt et e se e e e etae e e bae e s rae e e beeeessaeesaseeeessssaeeaasennnssaeaeenn 10
REACOIM SEIVET.....cutiiiiieiieeitetee ettt ettt ettt et s e s bt et et e sbe e bt e st e e sateesabeesaseesaseenas 11
PN)0 (e 11 0] 1 TSRS PPPPO 11
BUILAINEG. ..ottt sttt ettt st e bt s b sat e bt et e saeesateesmneeenbeennne 12
RUITITI ..ttt sttt e st e st e e s bb e e s bt e e s be e e e e e e msbbeeeesennnnees 13
PrOGram UPAALeS.ceevieriieiiieiieeieeete ettt ettt et e st e et e st e e bt e st e e bt e st e e sbeesabe e bt esabeennseeesnsaeesnsaas 17

KINOWI DUGS.c..eiiiieiiecieeteee ettt ettt et s bttt e s e e ta e st e e aaessse e st eesbeeseeensaestassseenssensseeesnnses 18

Introduction

This document describes the implementation of redundancy in ProviewR.
Note! Currently redundancy is still a beta version that is not thoroughly tested in production.

With redundancy here means how the function of a process node is taken over by another identical
node at failure. The first node is called primary node and the second secondary node. At startup the
primary node is active and executing the plc program and reading and writing to the I/O modules.
The secondary node is passive, waiting for a failure to occur in the primary node. After a fail over
the roles are reversed, the secondary node is active, and the primary node, after recovery, is passive
ready to take over.

To make it possible for a passive node to take over from the active node the following is required:

* Content of objects handled by the plc program and I/O handler, and possibly by applications, has
to be transferred cyclically from the active to the passive node. Reading of the objects in the
active node has to be synchronized with the execution of the plc program to make sure that data is
consistent.

* A supervision function that detects when a fail over should occur. The reason for a fail over can
be failure in the active node, timeout of the cyclic transfer or on command of the operator.

* After a fail over the passive node starts the execution of the plc code and applications, and starts
reading and writing to the I/O modules.

* Also a switching of nethandler and messagehandler communication with operator stations and
other nodes will occur at fail over.

Redundancy will also make it easier to implement minor changes in the program as the secondary
node temporary can take over while the primary node is updated and restarted.

Update of database

For the passive node to be able to start the execution of the plc program, it is required that the
objects in the database are updated with data from the active node. Data that has to be transferred
are data read from the 10 modules, data calculated by the plc and applications, also internal data to
detect edges and define states, and data set by operators. Attributes that is to be transferred has the
bit ReduTransfer set in Flags field in the class definition.

In order not to lose any events, data has to be transferred every plc scan. Furthermore the transfer
has to be made synchronous with the execution of plc threads and applications. Thus every plc
thread and application itself handles the collection of data in the active node. Data handled by a
thread or application is gathered into a packet that is sent to the corresponding thread in the passive
node, where it’s unpacked and distributed to the database. The unpacking is also performed by the
plc thread in order to be synchronous with a possible start up of the execution at fail over.

Some plc threads are executed at high frequency and high priority, executing a minor amounts of
code, while other are executing at lower frequency and lower priority, executing larger amounts of
code. This will also be reflected in the packet size where larger amount of code will imply larger
amount of data and larger packets. As the packets are sent with the scan time of the thread, the scan
time and packet size has to be adapted to the network capacity.

It is possible to set a priority of the packets so that smaller high prioritized packets will precede and
even interrupt larger and lower prioritized packets.

Active node Passive node

Plc process Plc process
Thread 1 Thread 1
5ms Packets Packets 5 ms
Prio 10 Prio 10
Thread 2 Thread 2
100 ms | Redcom Redcom 100 ms
Prio 1 \\‘ Segments / Prio 1

T T T T T I T T T
Event monitor ‘E},//' \D\. Event monitor

/Realtime database \ /Realtime database \

|

NS =/ N\ =/

Fig Transfer of object data and events from active to passive node

A/

Packet

A packet is configured with a RedcomPacket object. In the attribute Prio the priority of the packet is
set in the interval 0 — 10 where 0 is the lowest priority and 10 the highest. The attribute Hierarchies
is an array where the object hierarchies that is to be transferred by this thread is stated.

The RedcomPacket object is placed under the PlcThread object for the thread.

Table packet

The cyclic packets for a thread are preceded by a table packet that is sent from the active to the
passive node at startup or after a fail over. The packet contains information about the structure of
the coming cyclic packets, and where the packet data is to be distributed. In both the active and the
passive node a list is created with pointers to the handled objects to optimize the packing and
unpacking. The creation of the list and the table packet will take some time and therefor the start of
the fail over supervision is delayed at startup. This delay time may have to be adjusted in the
RedcomConfig.StartupTimeout attribute. If the startup sequence is yet not finished after this time,
the passive node will initiate a fail over.

Transfer sequence

The sequence for transfer of data for a thread is as follows.

At startup each plc thread in the active node creates a list of all attributes that is to be contained in
the cyclic packet. All objects under the hierarchies specified in Hierarchies in the RedcomPacket
object is searched, and attributes with the RedcomTransfer bit set is added to the list. Then a table
packet is sent to the plc thread of the passive node, containing a description of what the cyclic data

packets will contain, so that data can be distributed to the right place. The passive node builds a
corresponding list to optimize the distribution of the data in the packet.

Then the sending the cyclic packets starts. It is executed by the plc thread in the active node, with
the cycle time of the execution. The thread will execute the code, collect the data from the attribute
list, and send the packet to the corresponding thread in the passive node. The thread in the passive
node unpacks the packet and distributes the data in the database.

Event handling

Also alarms and events lists in the passive node has to be updated. This is done by a packet sent
from the event monitor in the active node to the event monitor in the passive node.

Redcom

The communication between the active and passive node is executed by a server process,
rt_redcom. The plc threads in the active node sends their packets to the redcom server. The packets
are divided into segments (with a default size of 8192 bytes) and segments with higher priority are
preceding segments with lower priority. In this way packets with higher priority will precede and
interrupt packets with lower priority. The redcom server in the passive node receives the segments
and restores the packet that are forwarded to the target thread.

The redcom server also handles the supervision of the node and decides if a switch from passive to
active node or vice versa should be done.

The redcom server is configured with a RedcomConfig object that is placed in the node hierarchy.

Fail over

If a failure is detected in the active node, the passive node transits to active state. The reason can be

* EmergencyBreak. The EmergencyBreak attribute in the node object is set. The cause for this can
be that some 10 module doesn’t respond, or time out from a plc thread.

» SystemStatus. Error indication in system status is caused by timeout or error indication in any
system process of application.

* Communication timeout. If the packets from the active node hasn’t arrived within the timeout
time. The timeout time is configured in the RedcomConfig object.

* Manuel transition. A transition can be initiated manually from for example the object graph for
the RecomConfig object.

Which of these reasons that should be able to cause a transition can be configured in the
RedcomConfig object.

Operator station communication

Connected operator stations are also affected by a transition. Qcom in the operator station connects
to both the primary and secondary node. All messages for net handler and event handler are
channeled to the currently active node.

I/O

Modbus TCP

Modbus communication is performed with request from the master and respond to the requesting
node from the slaves. Thus it is possible to communicate with the slaves without any further
configuration.

PSS9000

Remote rack replies to the calling node and is able to communicate with both primary and
secondary node without any additional configuration.

For QBUS rack it is possible to place both primary and secondary node in the same rack. To be able
to switch between the nodes a minor modification of the 10 cards is needed.

Configuration

Primary node

The primary node is configured as an ordinary process station with a NodeConfig object in the
directory volume.

Secondary node

The secondary node is configured in the NodeConfig object for the primary node under
SecondaryNode. Node name, boot node and IP address should be stated here.

PwR Directory, pwrp on redtest x

File Edit Functions View Options Tools Help

L 24 @ H Y 8 O a2 8k

5 VolRedtest RootVolurr

System $System
Build BuildConfig
Sim999 BusConfig

COpPEr_arraw ModeConfig
Description

D@D@

ModeMame COpRer-arrow
OperatingSystem Linux on x86_64
BootMode COpRer-arrow
Address 192.1658.0.104
Port 0
SimulatesingleProcess 0
Simulate5inglescanTime 0.000000
DistributeDisable 0
RemoteAccessType 55H
QComMinResendTime 0.000000
QComMaxResendTime 0.000000
QComExportBufQuota 600000
QComAckDelay 0.002000
OComSegmentSize 0

w1 10 00moioo0n0ni@mioTl

SecondaryMode RedundanceNodeConfig

Description

ModeMame aristotle2
BootMode 192.168.0.193
Address 192.168.0.193
RedcomPart 0
RedcomMinResendTime 0.000000
RedcomMaxResendTime 0.000000
RedcomExportBufQuota 0O
RedcomackDelay 0.000000

RedcomSegmentSize 0O
A .]

goooooononl

Fig Configuration of plc thread packets

Plc thread packets

The packets for the plc threads are configure with a RedcomPacket object under each PlcThread
object. The packet priority is stated in Prio, a value between 0 and 10 where 0 is low priority and 10
high. The object hierarchies that are handled by the thread and that should be included in the packet,

is stated in the Hierachies array.

PwR VolRedtest, pwrp onredtest

File Edit Functions View Options Tools Help

L 2% EH 6B @O a %R KR

| H1 $PlantHier [=r Modes tModeHier

|["__| H2 $PlantHier = Redtest $Mode
5 Security SSecurity
M OpPlaces tsModeHier
d Servers $ModeHier
= Plc PlcProcess

[=r 5ms PlcThread

Packet

RedcomPacket

= Description
== Prio 10
(B Hierarchies
-] Hierarchies[0] Hz
= TransmitCnt 0
= ReceivelCnt 0
= PacketSize 0
= TablePacketSize 0
= TableStatus
= TableVersion AtZero
= Attributes 0
= PackTime 0.000000
= UnpackTime 0.000000
= Coverage 0.000000
€5} Alarm CycleSup
€5} Halt CycleSup
== 100ms PlcThread
<3 Packet RedcomPacket
= Description
= Prio 1
B Hierarchies
-] Hierarchies[0] H1
== TransmitCnt 0
== ReceivelCnt 0
= PacketSize 0
= TablePacketSize 0
= TableStatus
= TableVersion AtZero
= Attributes 0
= PackTime 0.000000
= UnpackTime 0.000000
= Coverage 0.000000
5 Alarm CycleSup
5 Halt CycleSup

Fig Configuration of plc thread packets

Redcom server

The redcom server process is configured with a RedcomConfig object in the node hierarchy.

PwR VolRedtest, pwrp onredtest x

File Edit Functions View Options Tools Help

24 % #H %6 Oa % A8 R

J H1 i) MNodes sMNodeHier
Redtest tMNode
Security $5ecurity
OpPlaces $MNodeHier
Servers $MNodeHier
Redcom RedcomConfig

Description
CycleTime 0.005000
LinkTimeout 0.200000
StartupTimeout 5.000000
Force 0
SetActive 0
SetPassive 0
SetOff 0
FailoverReason 15
Link

MessageHandler MessageHandler

Fig Configuration of redcom server

Applications

Applications can transfer data with the redu_appl API. It’s defined in rt_redu.h and contains the
functions

pwr tStatus redu appl init(redu tCtx* ctx,
pwr sClass RedcomPacket* packetp);
pwr tStatus redu appl send(redu tCtx ctx,
void* msgqg,
int size,
pwr tTime version,
unsigned int msg id);
pwr tStatus redu appl receive(redu tCtx ctx,
unsigned int timeout,
void** msgqg,
int* size);

redu_appl_init() will intialize the application return a redu context. redu_appl_send() will send a
message with data from the active node to the passive, and redu_appl_receive() will receive in the

message in the passive node.
The message should contain a redu_sMsgHeader, eg

typedef struct {
redu_sMsgHeader h;
float datal;
float data2;

} sApplMessage;

The header will be filled in by the send function.

In passive mode the applications will just receive the message and store the data. In active mode it
will execute its tasks and then send the message.

void scan()

if (nodep->RedundancyState == pwr_eRedundancyState Passive) {
sApplMessage *rmsg;
int tmo = 1000;
pwr_tTime version = pwr_cNTime;

sts = redu_appl_receive(ctx, tmo, &rmsg, &size);
if (ODD(sts) {
datal = rmsg->datal;
data2 = rmsg->data2;
gcom Free(&sts, rmsg);
}
} else {
static unsigned int msgid = 0;
sApplMessage msg;
struct timespec scantime = {1, 0};

// Do some calculations
msg.datal datal;

msg.data2 data2;
sts = redu appl send(ctx, &msg, sizeof(msg), version, msgid++);

nanosleep(&scantime, NULL);
}
}

Building

Both the primary and secondary nodes will be present in the build node list and can be built
individually. They will share the same volume, but some files like 1d_boot, 1d_node and plc
executable will be different. A new configuration file for the redcom server will be added
(I1d_redcom).

Build Node

copper_arrow

aristotle2(copper_arrow)

Ok

Cancel

Fig Build node list with primary and secondary node

Both nodes are also present in the distribution list and are distributed separately.

Runtime

If a node is currently active or passive is displayed in the node graph, in the upper left corner, or in
the object graph for the RedcomConfig object. The current state is stored in the RedundancyState

attribute in the node object.

File Methods Help

Modes-Redtest-Servers-Redcom X

X Oz R2

State Active

off H Active || Passive

Status |:| Server running

LogMessage B connected, link to aristotle2 (192.168.0.193)

Fig Object graph for RedcomConfig object

From this graph, also a manual transition can be made with the Active and Passive buttons.

The Link[0] attribute in the RedcomConfig object contains the state of the link to the other node.

Xtt copper-arrow

File Edit Functions View Help
C Ok Kk
@ B || v || | & | L O
[=r Modes tModeHier
[=r Redtest tMNode
B Security tSecurity
[OpPlaces tModeHier
[=r SErvers $ModeHier
Redcom RedcomConfig
= Description
= CycleTime 0.005
= LinkTimeout 0.2
= StartupTimeout 10
= Farce 0
= SetActive 0
= SetPassive 0
= SetOff 0
B FailoverReason 15
CE Link
B é Link[O] RedcomLink
== ModeMNarme aristotle2
= State Up
= MaxResendTime 10
= MinResendTime 0.05
= LastRtt 0.000280151
= Timeout 0.1
= LackSequenceMumber 36
= RackSequenceMumber 5
= AckDelay 0
= Segmentsize 8192
= ExportQuota 600000
= Exportalloc 1308
= ExportPurged 0
== TimeMax 0.4016
= TimeMean 0.126996
= Disable 0
B Link[1] RedcomlLink
5} MessageHandler MessageHandler

Fig Link info in the active node

Xtt aristotle2

File Edit Functions View Help

-
L

$MNodeHier

= Redtest tMNode
B Security SSecurity
J OpPlaces $MNodeHier

Servers

Redcom

SModeHier

ledcomConfig

= Description

= CycleTime 0.005

== LinkTimeout 0.2

= StartupTimeout 10

= Force 0

= Sethctive 0

= SetPassive 0

= SetOff 0

B FailoverReason 15

CE Link

B & Link[0] RedcomlLink

ModeMame COpper-arrow
State Up
MaxResendTime 10
MinResendTime 0.05
LastRtt 0.000349185
Timeout 0.1

LackSequenceMumber 5
RackSequenceMurmber 3168054

A Y I T

AckDelay 0
Segmentsize 5192
ExportQuota 600000
ExportAlloc 0
ExportPurged 0
TimeMax 0.00865357
TimeMean 0.00244696
Disable 0

| Link[1] RedcomlLink

<3 MessageHandler MessageHandler

Fig Link info in the passive node

Information about the packet transfer is showed in the RedcomPacket objects.

Xtt copper-arrow x

File Edit Functions View Help

© O R
| | || & (K) 0T
= Modes tMNodeHier
[=r Redtest tMNode
<3t Security $Security
J OpPlaces sMNodeHier
I"__I Servers $ModeHier
== Plc PlcProcess
5ms PlcThread
Packet RedcomPacket
= Description
= Prio 10
CH Hierarchies
= TransmitCnt 2935186
= ReceiveCnt 2703
= PacketSize 1252
= TablePacket5ize 8596
= TableStatus Y% REDU-5-TABLESENT, Table sent
= TableVersion 25-AUG-2020 17:36:56.00
== Attributes 307
= PackTime 65.333e-06
= UnpackTime 1.0915e-05
= Coverage 0
<5 Alarm CycleSup
<5 Halt CycleSup
= 100ms PlcThread
B Packet RedcomPacket
= Description
= Prio 1
CH Hierarchies
= TransmitCnt 146760
= ReceiveCnt 134
== PacketSize 6072
= TablePacketSize 42336
= TableStatus YW%REDU-5-TABLESENT, Table sent
= TableVersion 25-AUG-2020 17:36:56.00
= Attributes 1512
= PackTime 4.8185e-05
= UnpackTime 3.2704e-05
= Coverage 0
5] Alarm CycleSup

Fig RedcomPacket objects in active node

Xtt aristotle2
File Edit Functions View Help

L
O
Modes tModeHier
Redtest tMode
Security $5ecurity
OpPlaces $MNodeHier
Servers $MNodeHier
Plc PlcProcess
5ms PlcThread
Packet RedcomPacket
Description
Prio 10
Hierarchies
TransmitCnt 0
ReceivelCnt 2957667
PacketSize 1252
TablePacketSize 0
TableStatus WREDU-5-TABLERECEIVED, Table successfully received
TakleVersion 25-AUG-2020 17:36:56.00
Attributes 0
PackTime 0
UnpackTime 1.0769e-05
Coverage 0
Alarm CycleSup
Halt CycleSup
100ms PlcThread
Packet RedcomPacket
Description
Prio
Hierarchies
TransmitCnt 0
ReceivelCnt 147882
PacketSize 6072
TablePacketSize 0
TableStatus YREDU-5-TABELERECEIVED, Table successfully received
TableVersion 25-AUG-2020 17:36:56.00
Attributes 0
PackTime 0
UnpackTime 3.1521e-05
Coverage 0

(B
&
&
=
@
(B

Fig RedcomPacket objects in passive node

Program updates

Minor changes in the program can be made without affecting the process. Distribute the changes to
the passive node and restart this node. The active node will continue to send also after the restart

and when the activity is switched to the passive node, the modifications will be started. After a
distribution and restart of the now passive node, the updated is completed.

Some consideration has to be made though. When the first node is restarted, it will receive recom
data from the other node, and this from the old program. New objects will not be affected, but
changed configuration data in old objects will be overwritten. In some cases this data can be
inserted manually (or with a script) when the switch is preformed.

Known bugs

NodeConfig.SecondaryNode.RedundantSegmentSize has no default value and has to be set
to 8192. Fixed in V5.7.2.

Statistics in the PlcThread object is not always updated in the passive node. Fixed in V5.7.2.

PlcThread.Coverage in passive node is not calculated correctly and shows a to large value.

	Introduction
	Update of database
	Packet
	Table packet
	Transfer sequence

	Event handling
	Redcom
	Fail over
	Operator station communication
	I/O
	Modbus TCP
	PSS9000

	Configuration
	Primary node
	Secondary node
	Plc thread packets
	Redcom server

	Applications
	Building
	Runtime
	Program updates
	Known bugs

