
 Guide to I/O System

2015-07-16

Copyright © 2005-2025 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Table of Contents
About this Guide...8
Introduction..9
Overview..10

Levels...10
Configuration...10

I/O System..11
PSS9000...12

Rack objekt...12
Rack_SSAB..12

Attributes...12
Driver...12

Ssab_RemoteRack..12
Attributes...12

Di cards...13
Ssab_BaseDiCard...13
Ssab_DI32D...13

Do cards..13
Ssab_BaseDoCard..13
Ssab_DO32KTS...14
Ssab_DO32KTS_Stall..14

Ai cards...14
Ssab_BaseACard..14
Ssab_AI8uP..14
Ssab_AI16uP..15
Ssab_AI32uP..15
Ssab_AI16uP_Logger..15

Ao cards..15
Ssab_AO16uP..15
Ssab_AO8uP..15
Ssab_AO8uPL..15

Co cards...15
Ssab_CO4uP...15

Profibus..17
The Profibus configuator...17

Address...18
SlaveGsdData...18
UserPrmData..18
Module..19

Specify the data area...20
Digital inputs..20
Analog inputs...21
Digital outputs..21
Analog outputs...21
Complex dataareas...21

Driver..21
Agent object..21

Pb_Profiboard...21
Slave objects...21

Pb_Dp_Slave..21
ABB_ACS_Pb_Slave...22
Siemens_ET200S_IM151..22
Siemens ET200M_IM153..22

Module objects..22
Pb_Module...22
ABB_ACS_PPO5...22
Siemens_ET200S_Ai2...22

Siemens_ET200S_Ao2..22
Siemens_ET200M_Di4..22
Siemens_ET200M_Di2..22
Siemens_ET200M_Do4...22
Siemens_ET200M_Do2...22

Profinet...23
The profinet configurator..23

Network Settings..25
DeviceName..25
IP Address..25
Subnet mask...25
MAC Address..26
SendClock..26
ReductionRatio..26
Phase..26

ByteOrdering..26
DeviceInfo..26
Device...26
DAP..26
Slot1 - Slotx..26

ModuleType...27
ModuleClass..27
ModuleInfo..27
Subslot X...27

Profinet viewer..28
Agent object..29

PnControllerSoftingPNAK...29
Device objects...29

PnDevice..29
Siemens_ET200S_PnDevice..29
Siemens_ET200M_PnDevice..29
Sinamics_G120_PnDevice...29
ABB_ACS_PnDevice..29

Module objects..29
PnModule...29
BaseFcPPO3PnModule..29
Sinamics_Tgm1_PnModule...29
Siemens_Ai2_PnModule..30
Siemens_Ao2_PnModule...30
Siemens_Di4_PnModule..30
Siemens_Di2_PnModule..30
Siemens_Do4_PnModule...30
Siemens_Do2_PnModule...30
Siemens_Do32_PnModule...30
Siemens_D16_PnModule...30
Siemens_Do8_PnModule...30
Siemens_Di32_PnModule..30
Siemens_Di16_PnModule..30
Siemens_Di8_PnModule..30
Siemens_Dx16_PnModule...30
Siemens_Ai8_PnModule..31
Siemens_Ao8_PnModule...31
Siemens_Ai4_PnModule..31
Siemens_Ao4_PnModule...31

Ethernet Powerlink..32
What Powerlink does..32
Main features...32
Powerlink facts..32
ProviewR as a MN..33

openCONFIGURATOR (CDC-file)...34

ProviewR as a CN...41
Communication between two ProviewR nodes..43

Modbus TCP Client...44
Configuration of a device..45

Master...45
Slaves..45
Modules..46

Specify the data area...47
Example..47

Master object...50
Modbus_Master..50

Slave objects...50
Modbus_TCP_Slave...50

Module objects..51
Modbus_Module..51

Modbus TCP Server...52
Data areas..52
Unit id...52
Port..52

Hilscher cifX..55
SYCON.net configuration...55
cifX driver configuration...56
ProviewR configuration..56

MotionControl USB I/O..59
Driver..59
Rack object..59

MotonControl_USB...59
Card object..60

MotionControl_USBIO..60
Channels..60

Ai configuration..60
Ao configuration...61

Link file...61
Velleman K8055..62

Agent object..62
USB_Agent..62

Rack object..63
Velleman_K8055..63

Card object..63
Velleman_K8055_Board..63

Channels..63
Ai configuration..63
Ao configuration...63

Link file...64
Arduino Uno..65

Initialization of the Arduino board..65
USB port baud rate..66
I/O Configuration..66
Rack object..67

Arduino_USB...67
Card object..67

Arduino_Uno..67
Channels..67

GPIO..70
OneWire...71

OneWire_AiDevice...71
Maxim_DS18B20...71

Adaption of I/O systems...73
Overview..73

Levels..73

Area objects...74
I/O objects...74
Processes...74
Framework..74
Methods...75

Framework...75
Create I/O objects..77

Flags..79
Attributes...80

Description...80
Process..80
ThreadObject..80

Method objects..80
Agents...81
Racks..81
Cards...81
Connect-method for a ThreadObject..81

Methods...82
Local data structure..82
Agent methods..82

IoAgentInit...82
IoAgentClose...82
IoAgentRead..83
IoAgentWrite...83
IoAgentSwap...83

Rack methods...83
IoRackInit..83
IoRackClose...83
IoRackRead...83
IoRackWrite...83
IoRackSwap...83

Card methods..84
IoCardInit...84
IoCardClose...84
IoCardRead..84
IoCardWrite...84
IoCardSwap...84

Method registration..84
Class registration..84

Module in ProviewR base system...84
Project..85

Example of rack methods...85
Example of the methods of a digital input card..86
Example of the methods of a digital output card..89

Step by step description...92
Attach to a project...92

Create classes...92
Create a class volume..92
Open the classvolume..93
Create a rack class...94
Create a card class...96
Build the classvolume..102

Install the driver..102
Write methods...103

Class registration...107
Makefile...107
Build options..108

Configure the node hierarchy...108

About this Guide

The ProviewR Guide to I/O System is intended for persons who will connect different kinds of I/O
systems to ProviewR, and for users that will gain a deeper understanding of how the I/O handling or
ProviewR works. The first part is an overview of the I/O systems adapted to ProviewR, and the
second part a description of how to adapt new I/O systems to ProviewR.

Introduction

The ProviewR I/O handling consists of a framework that is designed to
● be portable and runnable on different platforms.
● handle I/O devices on the local bus.
● handle distributed I/O systems and communicate with remote rack systems.
● make it possible to add new I/O-systems with ease.
● allow projects to implement local I/O systems.
● synchronize the I/O-system with the execution of the plc-program, or application processes.

Overview

The I/O devices of a process station is configured by creating objects in the ProviewR database. The
objects are divided in two trees, the Plant hierarchy and the Node hierarchy.
The Plant hierarchy describes how the plant is structured in various process parts, motors, pumps,
fans etc. Here you find signal objects that represents the values that are fetched from various sensors
and switches, or values that are put out to motors, actuators etc. Signal objects are of the classes Di,
Do, Ai, Ao, Ii, Io, Co or Po.
The node hierarchy describes the configuration of the process station, with server processes and I/O
system. The I/O system is configured by a tree of agent, rack, card and channel objects. The channel
objects represent an I/O signal attached to the computer at a channel of an I/O card (or via a
distributed bus system). The channel objects are of the classes ChanDi, ChanDo, ChanAi, ChanAo,
ChanIi, ChanIo and ChanCo. Each signal object in the plant hierarchy points to a channel object in
the node hierarchy. The connection corresponds to the physical link between the sensor and the
channel of a I/O unit.

Levels
The I/O objects in a process station are configured in a tree structure with four levels: Agent, Rack,
Card and Channel. The Channel objects can be configured as individual objects, or reside as internal
attributes in a Card object.

Configuration
When configuring an I/O system on the local bus, often the Rack and Card-levels are sufficient. A
configuration can look like this. A Rack object is placed below the $Node object, and below this a
Card object for each I/O card that i installed in the rack. The card objects contains channel objects
for the channels on the cards. The channel objects are connected to signal objects in the plant
hierarchy. The Channels for analog signals contains attributes for measurement ranges, and the card
objects contains attributes for addresses.
The configuration of a distributed I/O system is a bit different. Still the levels Agent, Rack, Card
and Channel are used, but the levels has another meaning. If we take Profibus as an example, the
agentlevel consist of an object for the master card that is mounted on the computer. The rack level
consist of slave objects, that represent the Profibus slaves that are connected to the Profibus circuit.
The card level consist of module objects that represent modules handled by the slaves. The Channel
objects represent data sent on the bus from the master card to the modules or vice versa.

I/O System

This chapter contains descriptions of the I/O systems that are implemented in ProviewR.

PSS9000
PSS9000 consist of a set of I/O cards for analog input, analog output, digital input and digital
output. There are also cards for counters and PID controllers. The cards are placed in a rack with the
bus QBUS, a bus originally designed for DEC's PDP-11 processor. The rack is connected via a PCI-
QBUS converter to an x86 PC, or connected via Ethernet, so called Remoterack.
The system is configured with objects from the SsabOx volume. There are objects representing the
Rack and Carde levels. The agent level i represented by the $Node object.

Rack objekt

Rack_SSAB
The Rack_SSAB object represents a 19” PSS9000 rack with QBUS backplane. The number of card
slots can vary.
The rack is connected to a x86 PC with a PCI-QBUS converter card, PCI-Q, that is installed into
the PC and connected to the rack with a cable. Several racks can be connected via bus extension
card.
The rack objects are placed below the $Node objects and named C1, C2 etc (in older systems the
naming convention R1, R2 etc can be found).

Attributes
Rack_SSAB doesn't contain any attributes used by the system.

Driver
The PCI-QBUS converter, PCI-Q, requires installation of a driver.

Ssab_RemoteRack
The Ssab_RemoteRack object configures a PSS9000 rack connected via Ethernet. A BFBETH card
is inserted into the rack and connected Ethernet.
The object is placed below the $Node object and named E1, E2 etc.

Attributes
Attributes Description

Address ip-adress for the BTBETH card.
LocalPort Port in the process station.
RemotePort Port for the BTBETH card. Default value 8000.
Process Process that handles the rack. 1 the plcprogram, 2 io_comm.
ThreadObject Thread object for the plc thread that should handle the rack. Only used if Process

is 1.
StallAction No, ResetInputs or EmergencyBreak. Default EmergencyBreak.

Di cards
All digital input cards have a common base class, Ssab_BaseDiCard, that contains attributes
common for all di cards. The objects for each card type are extended with channel objects for the
channels of the card.

Ssab_BaseDiCard
Attributes Description

RegAddress QBUS address.
ErrorHardLimit Error limit that stops the system.
ErrorSoftLimit Error limit that sends an alarm message.
Process Process that handles the rack. 1 the plcprogram, 2 io_comm.
ThreadObject Thread object for the plc thread that should handle the rack. Only used if Process

is 1.
ConvMask1 The conversion mask states which channels will be converted to signal values.

Handles channel 1 – 16.
ConvMask2 See ConvMask1. Handles channel 17 – 32.
InvMask1 The invert mask states which channels are inverted. Handles channel 1-16.
InvMask2 See InvMask1. Handles channel 17 – 32.

Ssab_DI32D
The object configures a digital input card of type DI32D. The card has 32 channels, which channel
objects reside as internal attributes in the object. The object is placed as a child to a Rack_SSAB or
Ssab_RemoteRack object. Attributes, see BaseDiCard.

Do cards
All digital output cards have a common base class, Ssab_BaseDoCard, that contains attributes that
are common for all do cards. The objects for each card type are extended with channel objects for
the channels of the card.

Ssab_BaseDoCard
Attributes Description

RegAddress QBUS address.
ErrorHardLimit Error limit that stops the system.
ErrorSoftLimit Error limit that sends an alarm message.
Process Process that handles the rack. 1 the plcprogram, 2 io_comm.
ThreadObject Thread object for the plc thread that should handle the rack. Only used if Process

is 1.
InvMask1 The invert mask states which channels are inverted. Handles channel 1-16.
InvMask2 See InvMask1. Handles channel 17 – 32.
FixedOutValue1 Bitmask for channel 1 to 16 when the I/O handling is emergency stopped.

Should normally be zero.
FixedOutValue2 See FixedOutValue1. FixedOutValue2 is a bitmask for channel 17 – 32.
ConvMask1 The conversion mask states which channels will be converted to signal values.

Handles channel 1 – 16.
ConvMask2 See ConvMask1. Handles channel 17 – 32.

Ssab_DO32KTS
The object configures a digital output card of type DO32KTS. The card has 32 output channels,
whose DoChan objects are internal attributes in the card object. The object is positioned as a child
to a Rack_SSAB or Ssab_RemoteRack object. Attributes, see BaseDoCard.

Ssab_DO32KTS_Stall
The object configures a digital output card of type DO32KTS Stall. The card is similar to
DO32KTS, but also contains a stall function, that resets the bus, i.e. all outputs are zeroed on all
cards, if no write or read i done on the card in 1.5 seconds.

Ai cards
All analog cards have a common base class, Ssab_BaseACard, that contains attributes that are
common for all analog cards. The objects for each card type are extended with channel objects for
the channels of the card.

Ssab_BaseACard
Attribut Beskrivning

RegAddress QBUS address.
ErrorHardLimit Error limit that stops the system.
ErrorSoftLimit Error limit that sends an alarm message.
Process Process that handles the rack. 1 the plcprogram, 2 io_comm.
ThreadObject Thread object for the plc thread that should handle the rack. Only used if Process

is 1.

Ssab_AI8uP
The object configures an analog input card of type Ai8uP. The card has 8 channels, whose AiChan
objects are internal attributes in the card object. The object is positioned as a child to a Rack_SSAB
or Ssab_RemoteRack object. Attributes, see BaseACard.

Ssab_AI16uP
The object configures an analog input card of type Ai16uP. The card has 16 channels, whose
AiChan objects is internal attributes in the card object. The object is positioned as a child to a
Rack_SSAB or Ssab_RemoteRack object. Attributes, see BaseACard.

Ssab_AI32uP
The object configures an analog input card of type Ai32uP. The card has 32 channels, whose
AiChan objects are internal attributes in the card object. The object is positioned as a child to a
Rack_SSAB or Ssab_RemoteRack object. Attributes, see BaseACard.

Ssab_AI16uP_Logger
The object configures an analog input card of type Ai16uP_Logger. The card has 16 channels,
whose AiChan objects are internal attributes in the card object. The object is positioned as a child to
a Rack_SSAB or Ssab_RemoteRack object. Attributes, see BaseACard.

Ao cards

Ssab_AO16uP
The object configures an analog input card of type AO16uP. The card has 16 channels, whose
AoChan objects are internal attributes in the card object. The object is positioned as a child to a
Rack_SSAB or Ssab_RemoteRack object. Attributes, see BaseACard.

Ssab_AO8uP
The object configures an analog input card of type AO8uP. The card has 8 channels, whose AoChan
objects are internal attributes in the card object. The object is positioned as a child to a Rack_SSAB
or Ssab_RemoteRack object. Attributes, see BaseACard.

Ssab_AO8uPL
The object configures an analog input card of type AO8uP. The card has 8 channels, whose AoChan
objects are internal attributes in the card object. The object is positioned as a child to a Rack_SSAB
or Ssab_RemoteRack object. Attributes, see BaseACard.

Co cards

Ssab_CO4uP
The object configures a counter card of type CO4uP. The card has 4 channels, whose CoChan
objects are internal attributes in the card object. The object is positioned as a child to a Rack_SSAB
or Ssab_RemoteRack object. Attributes, see BaseACard.

Fig PSS9000 configuration example

Profibus
Profibus is a fieldbus with nodes of type master and slave. The usual configuration is a monomaster
system with one master and up to 125 slaves. Each slave can handle one or several modules.
In the ProviewR I/O handling the master represents the agent level, the slaves the rack level, and the
module the card level.
ProviewR has support for the mastercard Softing PROFIboard PCI (see www.softing.com) that is
installed in the PCI-bus of the process station. The card is configured by an object of class
Profibus:Pb_Profiboard that is placed below the $Node object.
Each slave connected to the Profibus circuit is configured with an object of class Pb_DP_Slave, or a
subclass to this class. The slave objects are placed as children to the master object. For the slave
objects, a Profibus configurator can be opened, that configures the slave object, and creates module
object for the modules that is handled by the slave. The Profibus configurator uses the gsd-file for
the slave. The gsd-file is a textfile supplied by the vendor, that describes the various configurations
available for the actual slave. Before opening the Profibus configurator you has to specify the name
of the gsd-file. Copy the file to $pwrp_exe and insert the file name into the attribute GSDfile in the
slave object.
If there is a subclass present for the slave your about to configure, e.g. Siemens_ET200S_IM151,
the gsd-file is already stated in the slave object, and the gsd-file is included in the ProviewR
distribution.
When this operation is preformed, the Profibus configurator is opened by rightclicking on the object
and activating 'Configure Slave' from the popup menu.

The Profibus configuator
The Profibus configurator is opened for a slave object, i.e. an object of class Pb_DP_Slave or a
subclass of this class. There has to be a readable gsd-file stated in the GSDfile attribute in the slave
object.

http://www.softing.com/

Address
The address of the slave is stated in the Address attribute. The address has a value in the intervall 0-
125 that is usually configured with switches on the slave unit.

SlaveGsdData
The map SlaveGsdData contains informational data.

UserPrmData
The map UserPrmData contains the parameter that can be configured for the current slave.

Module
A slave can handle one or several modules. There are modular slaves with one single module,
where the slave and the module constitutes on unit. and there are slaves of rack type, into which a

large number of modules can be inserted. The Profibus configurator displays on map for each
module that can be configured for the current slave.
Each slave is given an object name, e.g. M1 M2 etc. Modules on the same slave has to have
different object names.
Also the module type is stated. This i chosen from a list of moduletypes supported by the current
slave. The list is found below Type.

Fig Module Type and Class selected
When the type is chosen, the parameter of the selected moduletype is configured under
UserPrmData.
You also have to state a class for the module object. At the configuration, a module object is created
for each configured module. The object is of class Pb_Module or a subclass of that class. Under
Class all the subclasses to Pb_Module are listed. If you find a class corresponding to the current
module type, you select this class, otherwise you select the base class Pb_Module. The difference
between the subclasses and the baseclass is that in the subclasses, the data area is specified with
channel objects (se section Specify the data area).
When all the modules are configured you save by clicking on 'Ok' and leave by clicking 'Cancel'.
The module objects with specified object names and classes are now created below the slave object.

If you are lucky, you will find a module object the corresponds to the current module. The criteria
for the correspondence is whether the specified data area matches the current module or not. If you
don't find a suitable module class there are two options: to create at new class with Pb_Module as
baselcass, extended with channel objects to specify the data area, or to configure the channel as
separate objects below a Pb_Module object. The second alternative is more convenient if there are
one or a few instances. If there are several modules you should consider creating a class for the
module.

Specify the data area
The next step is to specify the dataarea for a module. Input modules read data that are sent to the
process station over the bus, and output modules receives data from the process station. There are
also modules with both input and output data, e.g. frequency converters. The data areas that are sent
and received via the bus has to configured, and this is done with channel objects. The inarea is
specified with ChanDi, ChanAi and ChanIi objects, the outarea with ChanDo, ChanAo and ChanIo
objects. The channel objects are placed as children to the module object, or, if you choose do make
a specific class for the module, as internal attributes in the module object. In the channel object you
should set Representation, that specifies the format of a parameter, and in some cases also Number
(for Bit representation). In the slave object you might have to set the ByteOrdering (LittleEndian or
BigEndian) and FloatRepresentation (Intel or IEEE).

Digital inputs
Digital inputmodules send the value of the inputs as bits in a word. Each input is specified with a
ChanDi object. Representation is set to Bit8, Bit16, Bit32 or Bit64 dependent on the size of the
word, and in Number the bit number that contains the channel value is stated (first bit has number
0).

Analog inputs
An analog input is usually transferred as a integer value and specified with a ChanAi object.
Representation matches the integer format in the transfer. In some cases the value is sent as a float,
and the float format has to be stated in FloatRepresentation (FloatIntel or FloatIEEE) in the slave
object. Ranges for conversion to engineering value are specified in RawValRange,
ChannelSigValRange, SensorSigValRange and ActValRange (as the signalvalue is not used
ChannelSigValRange and SensorSigValRange can have the same value as RawValRange).

Digital outputs
Digital outputs are specified with ChanDo objects. Representation should be set to Bit8, Bit16,
Bit32 or Bit64 dependent on the transfer format.

Analog outputs
Analog outputs are specified with ChanAo objects. Set Representation and specify ranges for
conversion from engineering unit to transfer value (set ChannelSigValRange and
SensorSigValRange equal to RawValRange).

Complex dataareas
Many modules sends a mixture of integer, float, bitmasks etc. You then have to combine channel
objects of different type. The channel objects should be placed in the same order as the data they
represent is organized in the data area. For modules with both in and out area, the channels of the
inarea i are usually placed first and thereafter the channels of the outarea.

Driver
Softing PROFIboard requires a driver to be installed. Download the driver from www.softing.com.

Agent object

Pb_Profiboard
Agent object for a Profibus master of type Softing PROFIboard. The object is placed in the
nodehierarchy below the $Node object.

Slave objects

Pb_Dp_Slave
Baseobject for a profibus slave. Reside below a Profibus agent object. In the attribute GSDfile the
gsd-file for the current slave is stated. When the gsd-file is supplied the slave can be configured by
the Profibus configurator.

ABB_ACS_Pb_Slave
Slave object for a frequency converter ABB ACS800 with protocol PPO5.

Siemens_ET200S_IM151
Slave object for a Siemens ET200S IM151.

Siemens ET200M_IM153
Slave object for a Siemens ET200M IM153.

Module objects

Pb_Module
Base class for a Profibus module. The object is created by the Profibus configurator. Placed as child
to a slave object.

http://www.softing.com/

ABB_ACS_PPO5
Module object for a frequency converter ABB ACS800 with protocol PPO5.

Siemens_ET200S_Ai2
Module object for a Siemens ET200S module with 2 analog inputs.

Siemens_ET200S_Ao2
Module object for a Siemens ET200S module with 2 analog outputs.

Siemens_ET200M_Di4
Module object for a Siemens ET200M module with 4 digital inputs.

Siemens_ET200M_Di2
Module object for a Siemens ET200M module with 2 digital inputs.

Siemens_ET200M_Do4
Module object for a Siemens ET200M module with 4 digital outputs.

Siemens_ET200M_Do2
Module object for a Siemens ET200M module with 2 digital outputs.

Profinet
Profinet is a real time ethernet standard for automation. A Profinet IO system consists of three
device-types.
• The IO Controller, which controls the automation task.
• The IO Device, which is a field device, monitored and controlled by an IO Controller.
• The IO Supervisor is a software used for setting parameters and diagnosing individual IO

devices. Each device can consist of several modules and submodules.
Typically you have one controller controlling multiple IO devices. It is though possible to have
several controllers on the same network.
In the ProviewR I/O handling the controller represents the agent level, the devices the rack level,
and the module the card level.
ProviewR has support for a Profinet stack from the company Softing (see www.softing.com). From
ProviewR V5.3.1 the Profinet stack is implemented as a shared library that has to be installed on the
on the runtime station. If the Profinet I/O should be handled by the plc process the Profinet stack
also has to be installed on the development station. The stack is configured by an object of class
Profibus:PnControllerSoftingPNAK that is placed below the $Node object.
Each device connected to the Profinet controller is configured with an object of class PnDevice, or a
subclass to this class. The device objects are placed as children to the master. For the device objects,
a Profinet configurator can be opened, that configures the device object and creates module objects
for the modules that is handled by the device. The Profinet configurator uses the gsdml-file for the
specific device. The gsdml-file is a text file supplied by the vendor, that describes the various
configurations available for the actual device. Before opening the Profinet configurator you have to
specify the name of the gsdml-file. Copy the file to $pwrp_exe and insert the file name into the
attribute GSDMLfile in the device object.
If there is a subclass present for the device you are about to configure, e.g.
Sinamics_G120_PnDevice, the gsdml-file is already stated in the slave object and the gsdml-file is
included in the ProviewR distribution.
When this operation is performed, the Profinet configurator is opened by rightclicking on the object
and activating 'ConfigureDevice' from the popup menu.

The profinet configurator
The Profinet configurator is opened for a device object, i.e. an object of class PnDevice or a
subclass of this class. There has to be a readable gsdml-file stated in the GSDMLfile attribute in the
device object.

http://www.softing.com/

Network Settings
Set the properties for the network settings.

DeviceName
This is the most important setting and defines the device on the network. When IO communication
starts the Profinet stack will first look up all the devices on the network by the name.

IP Address
This is the ip-address of the device.

Subnet mask
The subnet mask of the device. Normally it should be set to 255.255.255.0.

MAC Address
The MAC Address should be given on the format XX:XX:XX:XX:XX:XX.

SendClock
The send clock factor is the number to multiply with 31,25 µs that results in the send clock. A send
clock factor of 32 will give a send clock of 1 ms.

ReductionRatio
Reduction ratio applied to the send clock to form the send cycle time. A send clock factor of 32 and
a reduction ratio of 32 will give send cycle time of 32 ms.

Phase
In case of a reduction ratio greater than one this property can be used to distribute the network
traffic more evenly. E.g. For reduction ratio 3 (phase can be between 1 and 3): if phase is one, data
will be sent on 1., 4., 7., etc. controller cycle (defined by the send clock). I phase is 2, it is sent on
2., 5., 8., ... cycle. Finally if phase is 3, data will be sent on 3., 6., 9., ... cycle.

ByteOrdering
Byte ordering of the device.

DeviceInfo
Information about the device as defined in the gsdml-file.

Device
Definition of the device.

DAP
The device access point is always defined on slot 0. Device-specific data is defined in it.

Slot1 - Slotx
A device can have one or several slots. The configurator will show you how many slots that can be
configured. For each slot you need to configure some things.

ModuleType
Pick the correct module type for this slot.

ModuleClass
Pick the ProviewR Profinet module class for this slot. The class PnModule will be valid for all types
of modules. If this is picked, IO channels will automatically be created as children to the PnModule-
object corresponding to the data area for this module. In many cases there exist prepared subclasses
of the PnModule-class for the specific module. This is for example the case for a Siemens ET200M
device. For the prepared classes the IO channels will exist as a part of the module-object. The
prepared classes should be used if they exist.

ModuleInfo
Information about the module.

Subslot X
On some types of modules there are some parameters that can be set that will define the behaviour
of the subslot. Very often there is nothing to configure for the subslots.
When all the slots are configured you save by clicking on 'Ok' and leave by clicking 'Cancel'. The
module objects with specified object names and classes are now created below the slave object.

Profinet viewer
There is a tool for searching a network for Profinet devices. In the ProviewR environment the
viewer is started by issuing the command:

profinet_viewer [device]

Where 'device' is for example eth0. By default the profinet_viewer will connect to eth1.

The tool will start searching the network for available devices by issuing a broadcast message.
Active devices will respond. After a certain time (a few seconds) you will get a list of the found
devices. For each found device you will get information about:
DeviceName
Ip-address
MAC-address
Vendor Id
Device Id
Family
InfoText
For each of these devices it is possible to set the DeviceName and the IP Address. It is very
important that you do this for all of the devices you intend to control.
In the Functions-menu you can choose to 'Update' the list or to 'Set Device Properties' for the
marked device.

Agent object

PnControllerSoftingPNAK
Agent object for a Profinet controller of type Softing Profinet Stack. The object is placed in the
node hierarchy below the $Node object.

Device objects

PnDevice
Base object for a Profinet device. Reside below a Profinet agent object. In the attribute GSDMfile
the gsdml-file for the current device is stated. When the gsdml-file is supplied the device can be
configured by the Profinet configurator.

Siemens_ET200S_PnDevice
Device object for a Siemens ET200S.

Siemens_ET200M_PnDevice
Device object for a Siemens ET200M.

Sinamics_G120_PnDevice
Device object for a Sinamics G120 drive.

ABB_ACS_PnDevice
Device object for a ABB ACS800 drive with RETA-02 interface (Profinet).

Module objects

PnModule
Base class for a Profinet module. The object is created by the Profinet configurator. Placed as child
to a device object.

BaseFcPPO3PnModule
Module object for a drive using Standard Telegram 1 / PPO3. The Io-attribute of this object can be
directly connected to a drive object of type BaseFcPPO3 in the $PlantHier. This one in turn can be
connected to a function object in a plc-program of type BaseFcPPO3Fo.

Sinamics_Tgm1_PnModule
Module object for a drive using Standard Telegram 1. The Io-attribute of this object can be directly
connected to a drive object of type Sinamics_G120_Tgm1 in the $PlantHier. This one in turn can be
connected to a function object in a plc-program of type Sinamics_G120_Tgm1Fo.

Siemens_Ai2_PnModule
Module object for a Siemens ET200 module with 2 analog inputs.

Siemens_Ao2_PnModule
Module object for a Siemens ET200 module with 2 analog outputs.

Siemens_Di4_PnModule
Module object for a Siemens ET200 module with 4 digital inputs.

Siemens_Di2_PnModule
Module object for a Siemens ET200 module with 2 digital inputs.

Siemens_Do4_PnModule
Module object for a Siemens ET200M module with 4 digital outputs.

Siemens_Do2_PnModule
Module object for a Siemens ET200 module with 2 digital outputs.

Siemens_Do32_PnModule
Module object for a Siemens ET200 module with 32 digital outputs.

Siemens_D16_PnModule
Module object for a Siemens ET200 module with 16 digital outputs.

Siemens_Do8_PnModule
Module object for a Siemens ET200 module with 8 digital outputs.

Siemens_Di32_PnModule
Module object for a Siemens ET200 module with 32 digital inputs.

Siemens_Di16_PnModule
Module object for a Siemens ET200 module with 16 digital inputs.

Siemens_Di8_PnModule
Module object for a Siemens ET200 module with 8 digital outputs.

Siemens_Dx16_PnModule
Module object for a Siemens ET200 module with 16 digital outputs and 16 digital inputs.

Siemens_Ai8_PnModule
Module object for a Siemens ET200 module with 8 analog inputs.

Siemens_Ao8_PnModule
Module object for a Siemens ET200 module with 8 analog outputs.

Siemens_Ai4_PnModule
Module object for a Siemens ET200 module with 4 analog inputs.

Siemens_Ao4_PnModule
Module object for a Siemens ET200 module with 4 analog outputs.

Ethernet Powerlink
Powerlink is a real time ethernet protocol. ProviewR implements the openPOWERLINK-V1.08.2
stack through Linux userspace, the stack is pre-compiled with ProviewR. This make the
implementation very flexible as you can use any ethernet NIC. There is no need for special
hardware to achieve hard-real time performance. A Powerlink network consists of two device-types.
A MN (MN = Managing Node) and one or several CN (Controlled Node), max 239 CNs. ProviewR
can act as both a CN and a MN but not at the same time. When creating a Powerlink network you
need a configuration file, this file can be generated using openCONFIGURATOR
(http://sourceforge.net/projects/openconf/), the file is used by the MN Powerlink stack to configure
the MN and CNs. When buying a Powerlink CN you will be provided a node specific configuration
file with the xdd/xdc extension, this file is imported to your openCONFIGURATOR project.

What Powerlink does
Powerlink expands the Ethernet standard with a mixed polling and timeslicing mechanism. This
enables:

• Guaranteed transfer of time-critical data in very short isochronic cycles with configurable
response time.

• Time-synchronization of all nodes in the network with very high precision of sub-
microseconds.

• Transmission of less time-critical data in a reserved asynchronous channel.

http://sourceforge.net/projects/openconf/

Main features
One of Powerlink's key characteristics is that nodes on the network can communicate via cross-
traffic, which works similar to the broadcast principle: all nodes on the network can receive data
that any one sender among them supplies to the network. This way of communication does not
require data to pass through the Master.
Powerlink supports all kinds of network topologies, star, tree, ring, or daisy chain, and any
combination of them.
Hot plugging capabilities, easily accessible system diagnostics, and easy integration with CANopen
are other features of Powerlink.

Powerlink facts
Network Type: Scalable Ethernet-based advanced communication system.
Topology: Very flexible with line, bus, star or tree topology.
Installation: Hub based Ethernet transmission with shielded twisted pair cables and RJ45
connectors.
Data Rate: 100 Mbit/s (gigabit ready)
Max number of stations: 240 including the master.
Data: Each node: up to 1490 bytes per telegram frame. Total: theoretically 1490x239 bytes.
Network features: Combines the Ethernet standard with CANopen technology, plus special
features developed by the ESPG.

ProviewR as a MN
In ProviewR I/O handling the MN represents the agent level, CN the rack level and the module the
card level.
When using ProviewR as a Powerlink MN you create a instance of the Epl_MN class in the Node
hierarchy. For every CN connected to the Powerlink network you add objects of the Epl_CN class,
or objects of subclass to this class. The CN objects are placed as children to the MN object. Some
configuration is done by editing the attributes of this objects. Most of the Powerlink configuration
in the CNs is done by the MN, the MN achieve this by using a file with .cdc extension. The file is
created with openCONFIGURATOR.

MN object setup example

CN object setup example

openCONFIGURATOR (CDC-file)
openCONFIGURATOR can be downloaded from http://sourceforge.net/projects/openconf/, it is
developed by a company named Kalycito. Below is a guide of how to use openCONFIGURATOR
and create a small Powerlink network. You start openCONFIGURATOR by right clicking on a MN
object in the node-hierarchy and then click “ConfigureEpl”. You can either create a new project or
open a existing.

When creating a new project, set the MN configuration option to “default” and set Auto generate to
“Yes”, press “Ok” button.

http://sourceforge.net/projects/openconf/

On the left the Powerlink network of the current project is displayed. Click the MN object, on the
right you will now be able to insert the cycle time, after you insert the time press “Save” button.
The fastest cycle time available in your Powerlink network depend on the capabilities of the present
CNs, how many CNs used in the network and the total size of the process image (The MN stack
used by with ProviewR is tested successfully with cycle times 1 – 100ms). To add a CN, right click
on the MN object and click “add CN...”, in the popup window press the “Ok” button. Repeat this till
all the CNs in your network is added.

Click “View” and select “Advanced view”. Right click on one of the CNs and click “Replace with
XDC/XDD...”, locate the xdc/xdd file associated with the current CN (provided by the
manufacturer). Repeat this for all CNs. Click all CN objects one by one and change the
“PollResponse Timeout” to 270us, press “Save” button.

Now you have to create the mapping for the in and output areas. With most CNs you have to create
the mapping by yourself. If you want/have to specify what data to be sent and received by the CN
you begin by expanding the slave, click the plus sign left of the slave you want to map. Now you
can see all the objects located in the slave, some objects is used to configure the slave and some
objects contain process data (usually you only map objects containing process data). If you want to
configure the CN to send a object you expand the PDO (Process data object) object, expand all the
objects under PDO. It should now look something like the picture below.

The objects containing the mapping is located at the following addresses: 0x1800, 0x1A00, 0x1600,
0x1400, if they don't exist you have to create them manually, this can be done by right clicking on
PDO and click “Add PDO...”, enter the address e.g 0x1800 and press “Ok”. For every object you
want the CN to send, you have to create a subindex in the 0x1A00 object. Right click on the object
with address 0x1A00 and click “Add SubIndex...”, enter 0x01, press “Ok”. Repeat this for every
object you want the CN to send (increment the subindex). Repeat this procedure for the objects you
want the CN to receive by adding subindex to object with address 0x1600. When done it should
look something like the picture below. CN_1 is configured to send two objects and receive two
objects, now you have to specify the objects to send/receive.

Click the TPDO object and a view of the transmit mapping will visible on the right. Every row
represents one object the CN will send, to create more rows you add more subindex to the 0x1A00
object as described above. In each row you input the offset, length, index and subindex of the object
you want the CN to send (“Node Id” column should be 0x0, you only change it if you use cross-
talk). The first row always have offset 0x0000 (it is the first object in the output area). The picture
below show a CN configured to send and receive two objects. The two object the CN will send have
a length of 8 bits and is located at address 0x6400 subindex 0x01 and subindex 0x02. The second
object must have a offset of 8 bits int the output area since the first objects occupies the first 8 bits.
To map the input area of the CN you click the RPDO and add your mapping in the same way as
described above.

When the mapping is completed you click the subindex objects one by one in the object at address
0x1A00 and 0x1600 and check the box next to the text “Include subindex in CDC generation”.
When you've checked all the boxes, the configuration is done. Press “Build Project” button, all of
the mapping and configuration will automatically be inserted to the MN obd, a directory (cdc_xap)
will be created in the working directory of the project. The configuration file mnobd.cdc is
generated in this directory. Copy the .cdc file to a suitable location. When configuring the Epl_MN
object in the node-hierarchy you insert the path to the .cdc files location to the CDCfile attribute.

All that remains is to insert Epl_Module objects (or subclass objects to this class) as children to the
Epl_CN objects (or objects of subclass to Epl_CN). When doing this it is a good idea to compare
your node-hierarchy with the xap.h file, they should match. openCONFIGURATOR will 16-bit
align 16-bit variables and 32-bit align 32-bit variables, it will also 32-bit align the whole in and out
areas. In ProviewR you don't have to compensate for the padding variables added by
openCONFIGURATOR (added when align). The logic behind the objects will compensate
automatically when padding is needed. The pictures above is a good example of a node-hierarchy
that match a xap.h file. Note that no padding variables is inserted in the node-hierarchy.

ProviewR as a CN
When ProviewR should act as a CN you create an EPL_CNServer object in the node hierarchy, and
below this an EPL_CnServerModule object. In the EPL_CNServer object the network device, IP
address and NodeId is specified. The NodeId is a unique number between 1 and 239 on the
Powerlink circuit, and the NodeId should also be the last number in the IP address. For example
NodeId 14 will require the IP address 10.0.0.14.

Fig Configration of a Epl_CNServer object
Under the module object, channel objects are created for signals that should be exposed for the MN.
As for other bus I/O the Representation attribute in the channel objects states the format in the
Powerlink message. Input channels can be written to by the MN and output channels can be read by
the MN.

Fig CN server configuration
When CN configuration is complete, an xdd-file is created by rightclicking on the Epl_CnServer
object in the configurator, and activating GenerateXddFile. This will create the file
$pwrp_cnf/cnserver.xdd which can be used when configuring the Powerlink circuit.
The Powerlink server process should also be configured with a EplHandler object in the node
hierarchy. When this object exist, the CN server process, rt_powerlink_cn, will be started.

Communication between two ProviewR nodes
Powerlink can be used to send messages between two ProviewR nodes with realtime performance.
In this case one node is configured as a MN and the other as a CN server. The CN node is
configured as described in the ProviewR as CN section above, and an xdd-file is generated and used
in the configuration of the MN node.
The MN node is configured with an Epl_MN object in the node hierarchy, and below this an
Epl_CN, and below this an Epl_Module. Under the Epl_Module object the channel objects is
created which should correspond with the channels in the CN node, with the difference that outputs
here are configured as inputs, and inputs as outputs. The Epl_MN is configured with IP address
10.0.0.240 and NodeId 240, and the Epl_CN with the NodeId of the CN node.

Fig MN configuration
The Powerlink circuit also has to be configured in the openCONFIGURATOR, and this is opened
by rightclicking on the Epl_MN object and activating ConfigureEpl. Create a new project with
Default MN Configuration and AutoGenerate set to Yes.
Rightclick on the created MN node and activate Add CN. Enter the Node ID, select Import
XDC/XDD, and specify the previously created xtt-file for the CN server, cnserver.xdd on
$pwrp_cnf.

Fig Add CN in openCONFIGURATOR

Select the created CN node and set the PollResponse Timeout to 270 us. Save and build the project.

Fig Circuit configuration in openCONFIGURATOR
Copy the created configuration file
$pwrp_login/Documents/openCONFIGURATOR_Projects/'projectname'/cdc_xap/mnobd.cdc

to $pwrp_load. This file should be distributed to the MN node with an ApplDistribute object in the
directory volume.
Also the Powerlink server process should be configured with a EplHandler object in the node
hierarchy in both the CN and MN node.

Modbus TCP Client
MODBUS is an application layer messaging protocol that provides client/server communication
between devices. ProviewR implements the MODBUS messaging service over TCP/IP.
MODBUS is a request/reply protocol and offers services specified by function codes. For more
information on the MODBUS protocol see the documents:
MODBUS Application Protocol Specification V1.1b
MODBUS Messaging on TCP/IP Implementation Guide V1.0b
Each device that is to be communicated with is configured with an object of class
Modbus_TCP_Slave, or a subclass to this class. The interface to the device is defined by instances
of the class Modbus_Module. Each instance of the Modbus_Module represents a function code for
the service that is requested. The corresponding data area is defined with channels.

Configuration of a device

Master
Insert a Modbus_Master-object in the node-hierarchy. By default all Modbus communication will
be handled by one plc-thread. Connect the master to a plc-thread.

Slaves
As children to the master-object you configure the devices that you want to communicate with.
Each device will be represented by a Modbus_TCP_Slave-object.
Insert a Modbus_TCP_Slave-object in the node-hierarchy. Specify the ip-address of the MODBUS
device. By default the device will be handled by a plc-thread. Connect the slave to a plc-thread. An

example is given below.

Modules
With help of Modbus_Module's you define what type of actions you want to perform on the slave
and at which address. The action is defined by a function code which means either reading or
writing data to the Modbus slave. You also specify the address at which to read or write. The
number of data to be read or written is defined by how you define the data area (see below).
The supported function codes are:
ReadCoils (FC 1)
This function code is used to read from 1 to 2000 contiguous status of coils in a remote device.
Typically the input data area is defined by a number of ChanDi's which represent the number of
coils you want to read. The representation on the ChanDi should be set to Bit8.
ReadDiscreteInputs (FC 2)
This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote
device. Typically the input data area is defined by a number of ChanDi's which represent the
number of coils you want to read. The representation on the ChanDi should be set to Bit8.
ReadHoldingRegisters (FC 3)
This function code is used to read the contents of a contiguous block of holding registers in a
remote device. A register is 2 bytes long. Typically the input data area is defined by a number of

ChanIi's which represent the number of registers you want to read. The representation on the ChanIi
should be set to UInt16 or Int16. ChanAi and ChanDi is also applicable. In case of ChanDi the
representation should be set to Bit16.
ReadInputRegisters (FC 4)
This function code is used to read from 1 to 125 contiguous input registers in a remote device.
Typically the input data area is defined by a number of ChanIi's which represent the number of
registers you want to read. The representation on the ChanIi should be set to UInt16 or Int16.
ChanAi and ChanDi is also applicable. In case of ChanDi the representation should be set to Bit16.
WriteMultipleCoils (FC 15)
This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote
Device. Typically the output data area is defined by a number of ChanDo's which represent the
number of coils you want to write. The representation on the ChanDo should be set to Bit8.
WriteMultipleRegisters (FC 16)
This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote
device. Typically the output data area is defined by a number of ChanIo's which represent the
number of registers you want to write. The representation on the ChanIo should be set to UInt16 or
Int16. ChanAo and ChanDo is also applicable. In case of ChanDo the representation should be set
to Bit16.

Specify the data area
To specify the data area a number of channel objects are placed as children to the module object. In
the channel object you should set Representation, that specifies the format of a parameter, and in
some cases also Number (for Bit representation). The data area is configured in much the same way
as the Profibus I/O except for that you never have to think about the byte ordering which is
specified by the MODBUS standard to be Big Endian.
To clarify how the data area is specified an example is given below.

Example
In this example we have a device which is a modular station of type Schneider. That means a station
to which a number of different I/O-modules could be connected. We will use the function codes for
reading and writing holding registers (FC3 and FC16). Our station consist of
1 Di 6 module
1 Do 6 module
1 Ai 2 module
1 Ao 2 module
According to the specification of this modular station the digital input module uses 2 registers, one
to report data and one to report status. The digital output module uses one register to echo output
data and reports one register as status. The analog input module uses 2 registers, one for each
channel. The analog output module uses two registers for output data and reports 2 registers as
status for each channel. Thus the data area looks like:
Input area

1 register (2 bytes) digital input data, 6 lowest bits represent the inputs
1 register (2 bytes) digital input status
1 register (2 bytes) echo digital output

1 register, digital output status
1 register, analog input channel 1
1 register, analog input channel 2

1 register, echo analog output channel 1

1 register, echo analog output channel 2

Output area

1 register digital output data, 6 lowest bits represent the outputs
1 register, analog output channel 1
1 register, analog output channel 2

Configuration
The configuration is made with 2 Modbus modules. One will read holding registers starting at
address 5391 and one will write registers starting at address 0.

The input area is configured with channels as shown below. It consists of 6 ChanDi with
representation Bit16 and numbered 0-5 meaning that in the first register (2 bytes, 16 bits) we will
read the 6 lowest bits to the channels. The same is done for the statuses of the digital input channels.
The rest of the input registers is read with ChanIi's with representation UInt16.

The output area is configured as shown below. The digital outputs are configured with ChanDo's
with representation Bit16 and numbered 0 to 5. The analog outputs are specified with 2 ChanIi's,
one for the respective channel.

Master object

Modbus_Master
Baseobject for a Modbus master. You need to have a master-object to be able to handle Modbus
TCP communication at all. This is new since version V4.6.0 and was added to be able to handle the
slaves in a little bit more intelligent way. Connect which plc-thread that will run the
communication with the slaves.

Slave objects

Modbus_TCP_Slave
Baseobject for a Modbus slave. Reside in the node hierarchy and is placed as a child to a
Modbus_Master-object. The IP-address of the device is configured. See further information in the
help for this class.

Module objects

Modbus_Module
Baseclass for a Modbus module. Placed as child to a slave object. Wanted function code is chosen.
See further information in the help for this class.

Modbus TCP Server
With the Modbus TCP Server it is possible for external SCADA and storage systems to fetch data
from a ProviewR system via Modbus TCP. It can also be used to exchange data between ProviewR
systems
The server is configured with a Modbus_TCP_Server object in the node hierarchy, and below this
with a Modbus_TCP_ServerModule object.

Data areas
The Modbus_TCP_ServerModule object handles two data areas. One area for reading, from which
the clients can read at specified offsets, and one for writing, where clients can write data. Each area
has a logical start address, which is stated in attributes in the Modbus_TCP_ServerModule object.
ReadAddress is the start address for the read area, and WriteAddress is the start address for the
write area. To perform a read or write operation, the client has to specify an address, and this
address it the sum of the start address and the offset to the channel that is to be written or read. The
start address makes it possible not to have overlapping address space for the read and write areas,
which might cause confusion on the client side.
The data area are configured with channel objects below the server module. The Representation
attributes in the channel objects states the size of each channel and how the data should be
interpreted. The normal representation for Di and Do channels are Bit8, where the Number
attributes specifies the bit number for the channel, and the normal representation for integer and
analog channels are Int16.

Unit id
Serveral modules can be configured in a node, by creating one Modbus_TCP_ServerModule object
for each module. Every module object has to have a unique unit identity, which is stated in the
UnitId attribute. This identity is used by the clients to address a specific module.

Port
By default, the Modbus TCP communication uses the port 502.
If you, for example, want to use Modbus TCP for communication between two ProviewR systems,
another port can be stated in the Port attribute of the Modbus_TCP_Server object. The same port
also has to be specified in the slave object in the client node.

Fig Modbus Server configuration

Fig Modbus Server channel configuration

Hilscher cifX
Hilscher cifX is a family of I/O cards handling a number of different I/O buses, CANopen, CC-
Link, DeviceNet, EtherCAT, EtherNet/IP, Modbus TCP, Powerlink, Profibus, Profinet and Sercos
III. The interface to ProviewR is the same for all the boards and buses.
The board and the devices/slaves on the bus are configured in the SYCON.net configurator on
Windows. The configuration is exported to a configuration file, that is copied to the process station.
A Linux driver for the cifX card has to be installed on the process station.
The library for the interface to the driver, has to be installed on the development station.

SYCON.net configuration
Download SYCON.net from www.hilscher.com and install on a Window PC. Start SYCON.net,
import device descriptions, eg gsd, gsdml, eds files etc.

A configuration in SYCON.net
When the configuration is finished, export it from the controller menu,
Additional Functions/Export/DBM/nxd...

Fig Export the configuration
This will create a configuration file, in some cases two files, that should be copied to the process
station.

http://www.hilscher.com/

cifX driver configuration
The Linux cifX driver should be installed on the process station. Follow the instructions to build
and load the driver.
A directory tree for the driver configuration should be created under opt/cifx.
On /opt/cifx the bootloader, eg NETX100-BSL.bin, should be placed. Under /opt/cifx/deviceconfig
one directory for each card is created, with the serial number as directory name, and under this a
directory with the device number and serial number, eg /opt/cifx/deviceconfig/1250100/22219. On
this directory a file, device.conf is created. This should contain an alias, that is the identification of
the card in the Proivew configuration. The alias has to correspond to the Alias attribute in the
Hilscher_cifX_Master object.
An example of device.conf:

alias=PROFINET
irq=yes

This directory also contains a sub directory, channel0, where the firmware for the board is placed,
together with the configuration files generated from SYCON.net. In the example below
cifXpnm.nxf is the firmware for the Profinet controller, and config.nxd and nwid.nxd exported from
the SYCON.net configuration
> ls /opt/cifx/deviceconfig/1250100/22219/channel0
cifXpnm.nxf
config.nxd
nwid.nxd

ProviewR configuration
The ProviewR I/O configuration uses the Hilscher_cifX_Master, Hilscher_cifX_Device and
Hilscher_cifX_Module objects, which represents the agent, rack and card levels.
Place a Hilscher_cifX_Master object in the node hierarchy under the $Node object. Set the Alias
attribute to the same alias as in the device.conf file for the board in the driver configuration. Set also
the correct Process and ThreadObject.
Below the master object, a Hilscher_cifX_Device object is created for each device/slave on the bus,
and below this, a Hilscher_cifX_Module object for each module on the device/slave. The input and
output areas for the modules are configured with channel objects. Create the correct type of input
and output channels, and set representation to match the structure of the areas. Read more about this
in Specify the data area in the Profibus section above.
The data areas are read from, and written to, a double ported memory on the cifX board. It is
important that the slave and module order, as well as the channel specification, matches the
SYCON.net configuration, so that the areas for each module can be read and written on the correct
offset in the double ported memory. The offset and size for each device and module are calculated at
runtime, and stored in the device and module objects. These offsets and sizes can be compared with
the SYCON configuration.

Fig Hilscher cifX configuration

The master object contains a Diagnosis object that displays the state of the board. Note that the
Status attribute are displayed in decimal form, and has to be converted to hexadecimal form to be
identified in the cifX manuals.

Fig cifX diagnosis

MotionControl USB I/O
Motion Control USB I/O is a device manufactured by Motion Control, www.motioncontrol.se. The
device is connected to the USB port on the pc. The unit contains 21 channels of different types,
divided into 3 ports, A, B and C. The first four channels (A1 – A4) are Digital outputs of relay type
for voltage up to 230 V. The next four channels (A5 – A8) are Digital inputs with optocouplers.
Next eight channels (B1 – B8) can either be configured as digital outputs, digital inputs or analog
inputs. The last 5 channels (C1 – C5) can be digital outputs or inputs, where C4 and C5 also can be
configured as analog outputs.
In ProviewR USB I/O is configured with a rackobject, OtherIO:MotionControl_USB, that is
positioned in the nodehierarchy under the $Node object, and a card object,
OtherIO:MotionControl_USBIO. Below the card object, channelobjects of the type that
corresponds to the configuration of the card, are placed.
The card has a watchdog the resets the outputs of the card, if the card is not written to within a
certain time.
For the moment, the driver can only handle one device.

Driver
Download and unback the tar-file for the driver.

> tar -xvzf usbio.tar.tz
Build the driver with make

> cd usbio/driver/linux-2.6

> make

Install the driver usbio.ko as root

> insmod usbio.ko
Allow all to read and write to the driver

> chmod a+rw /dev/usbio0
There is also an API to the driver with an archive, usbio/test/libusbio.a. Copy the archive to /usr/lib
or $pwrp_lib on the development station.

Rack object

MotonControl_USB
The rack object is placed under the $Node object in the node hierarchy. Process should be 1.
Connect the object to a plc thread by selecting a PlcThread object and activate Connect PlcThread
in the popup menu for the rack object.

Card object

MotionControl_USBIO
The card object is positioned under the rack object. Process should also here be 1 and the object
should be connected to a plc thread. State the card identity, that is found on the circuit card, in the
Address attribute. The watchdog is activated if a value is set in WatchdogTime, that states the
timeout time in seconds.

Channels
The channels of the card are configured under the card object with channels objects. The Number
attribute of the channel object states which channel the object configures (0 – 20), and the class of
the object states if the channel is used as a Di, Do, Ai or Ao. The table below displays how the
channels can be configured.

Channel Type Number
A1 ChanDo 0
A2 ChanDo 1
A3 ChanDo 2
A4 ChanDo 3
A5 ChanDi 4
A6 ChanDi 5
A7 ChanDi 6
A8 ChanDi 7
B1 ChanDi, ChanDo or ChanAi 8
B2 ChanDi, ChanDo or ChanAi 9
B3 ChanDi, ChanDo or ChanAi 10
B4 ChanDi, ChanDo or ChanAi 11
B5 ChanDi, ChanDo or ChanAi 12
B6 ChanDi, ChanDo or ChanAi 13
B7 ChanDi, ChanDo or ChanAi 14
B8 ChanDi, ChanDo or ChanAi 15
C1 ChanDi or ChanDo 16
C2 ChanDi or ChanDo 17
C3 ChanDi or ChanDo 18
C4 ChanDi, ChanDo or ChanAo 19
C5 ChanDi, ChanDo or ChanAo 20

Ai configuration
The Ai channels has rawvalue range 0 – 1023 and signalvalue range 0 – 5 V, i.e. RawValRange and
ChannelSigValRange should be set to

RawValRangeLow 0
RawValRangeHigh 1023
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

For example, to configure ActualValue range to 0 – 100, set SensorSigValRange 0 - 5 and
ActValRange 0 – 100.

Ao configuration
The Ao channels has rawvalue range 0 – 5 and signalvalue range 0 – 5, i.e. RawValRange and
ChannelSigValRange should be set to

RawValRangeLow 0

RawValRangeHigh 5
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

For example, to configure ActualValue range to 0 – 100, set SensorSigValRange 0 – 5 and
ActValRange 0 – 100.

Link file
The archive with the driver API has to be linked to the plcprogram. This is done by creating the file
$pwrp_exe/ plc_'nodename'_'busnumber'_'plcname'.opt, e.g.
$pwrp_exe/plc_mynode_0517_plc.opt with the content
$pwr_obj/rt_io_user.o -lpwr_rt -lusbio -lpwr_usb_dummy -lpwr_pnak_dummy -
lpwr_cifx_dummy -lpwr_nodave_dummy -lpwr_epl_dummy

Velleman K8055
Velleman K8055 is an USB experiment board with 2 Ai, 5 Di, 8 Do and 2 Ao. It is can be
purchased as a kit, K8055, or as an assembled board, VM110. The card can be used to test
ProviewR with some simple application. Note that there are no watchdog or stall function on the
board.
The board is quite slow, a read write cycle takes about 25 ms.
On the board are two switches for address setting, SK5 and SK6. Four different addresses can be
set:

Adress SK5 SK6
0 on on
1 off on
2 on off
3 off off

The card doesn't require any special driver, however the package libusb-1.0 has to be installed.
ProviewR has to have read and write access to the device. The device will appear under
/dev/bus/usb, e.g. /dev/bus/usb/002/003. With the command
> sudo chmod a+rw /dev/bus/usb/002/003
all users are given read and write access (use lsusb to find out the current device-name).
A more permanent solution to set write permissions on Ubuntu is to create the file
/etc/rules.d/Velleman.rules with the content
SUBSYSTEM !="usb_device", ACTION !="add", GOTO="velleman_rules_end"
SYSFS{idVendor} =="10cf", SYSFS{idProduct} =="5502", SYMLINK+="Velleman"
MODE="0666", OWNER="pwrp", GROUP="root"
LABEL="velleman_rules_end"

Velleman K8055 is tested on Ubuntu 10.4. It does not work on Debian Lenny.
The card is configured in ProviewR with the agent object USB_Agent, the rack object
Velleman_K8055 and the card object Velleman_K8055_Board.

Agent object

USB_Agent
A USB_Agent object is configured under the node object. This is a general object for devices that
is accessed by libusb. State the Process (Plc) and plc thread in the PlcThread attribute.

Rack object

Velleman_K8055
Under the USB_Agent object a Velleman_K8055 object is configured. Also in this object, the
Process and PlcThread has to be stated.

Card object

Velleman_K8055_Board
Beneath the rack object, a card object of type Velleman_K8055_Board is configured. You can have
up to 4 cards in one system. State Process and PlcThread, and state the card address in the Address
attribute.

Channels
All channelobjects reside internally in the card object, Velleman_K8055_Board. There are one
array with two ChanAi objects, one array with 5 ChanDi objects, one array with 2 ChanAo objects,
and one array with ChanDo objects. Connect the channel object to suitable signal objects.

Ai configuration
The Ai channels has rawvalue range 0 – 255 and signalvalue range 0 – 5 V, i.e. RawValRange and
ChannelSigValRange should be set to

RawValRangeLow 0
RawValRangeHigh 255
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

For example, to configure ActualValue range to 0 – 100, set SensorSigValRange 0 - 5 and
ActValRange 0 – 100.

Ao configuration
The Ao channels has rawvalue range 0 – 255 and signalvalue range 0 – 5, i.e. RawValRange and
ChannelSigValRange should be set to

RawValRangeLow 0
RawValRangeHigh 255
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

For example, to configure ActualValue range to 0 – 100, set SensorSigValRange 0 – 5 and
ActValRange 0 – 100.

Link file
The archive libusb-1.0 has to be linked to the plcprogram. This is done by creating the file
$pwrp_exe/ plc_'nodename'_'busnumber'_'plcname'.opt, e.g.
$pwrp_exe/plc_mynode_0517_plc.opt with the content
$pwr_obj/rt_io_user.o -lpwr_rt -lusb-1.0 -lpwr_usbio_dummy -lpwr_pnak_dummy
-lpwr_cifx_dummy -lpwr_nodave_dummy -lpwr_epl_dummy

Fig Velleman K8055 configuration

Arduino Uno
Interface to Arduino USB boards, e.g. Uno and Mega2560.

Initialization of the Arduino board
Install the Arduino environment on your development station.
Connect the Arduino board to the development station and examine the device, normally
/dev/ttyACM0 on linux.
Open the sketch

$pwr_inc/pwr_arduino_uno.ino
in the Arduino Development Environment. Select board type in Tools/Board in the menu, and serial
port in Tools/Serial Port. Press the Upload button.

Fig The Arduino Development Environment
See www.arduino.cc for more information.

http://www.arduino.cc/

USB port baud rate
For scan times faster than 50 ms you need to increase the baud rate of the USB port. The default
baud rate of 9600 gives a read write cycle of about 45 ms. By increasing the baud rate to 38400 this
time is reduced to 7 ms, which makes it possible to use scan times down to 10 ms.
To change the baud rate you
–configure the baud rate in the BaudRate attribute in the Arduino_Uno object.
–change the baud rate value in the Serial.begin() call in the pwr_arduino_uno sketch and upload the
modified sketch to the board.

Fig Baud rate changed to 38400

I/O Configuration
Don't use digital channels 0 and 1, which seems to interfere with the USB communication.
The card is configured in ProviewR with the rack object Arduino_USB and the card object
Arduino_Uno.

Rack object

Arduino_USB
A Arduino_USB object is configured under the node object. State the Process (Plc) and plc thread
in the PlcThread attribute.

Card object

Arduino_Uno
Beneath the rack object, a card object of type Arduino_Uno is configured. You can have several
cards in one system. State Process and PlcThread and the device name of the USB port, e.g.
/dev/ttyACM0.

Channels
Digital channels
Create channel objects under the Arduino_Uno object. For digital channels (2-13 on Uno and 2-53
on Mega2560), create ChanDi for the pins you want to use a digital inputs, and ChanDo for the pins
you want to use as digital outputs. Set attribute Number to the pin number. Connect to suitable
signal objects. Only the channels that are going to be used have to be configured.
Ai channels
Create ChanAi objects for the analog input channels (0-5 on Uno and 0-15 on Mega2560). Set
Number to the channel number.
The Ai channels has rawvalue range 0 – 1023 and signalvalue range 0 – 5 V, i.e. RawValRange and
ChannelSigValRange should be set to

RawValRangeLow 0
RawValRangeHigh 1023
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

For example, to configure ActualValue range to 0 – 100, set SensorSigValRange 0 - 5 and
ActValRange 0 – 100.
PWM Ao channels
Some digital pins can be used as PWM. To configure a pin as PWM, create a ChanAo and set
Number to channel number.
The PWM channels have rawvalue range 0 – 255 and signalvalue range 0 – 5 V, i.e. RawValRange
and ChannelSigValRange should be set to

RawValRangeLow 0
RawValRangeHigh 255
ChannelSigValRangeLow 0
ChannelSigValRangeHigh 5

Fig Arduino Uno configuration

Fig Arduino Uno channel configuration

GPIO
GPIO, General Purpose I/O, are available on some micro processors. As they are connected
directly to the processor chip, they have very limited current and voltage tolerance, and are not ideal
t use for process control. Usually some intermediate electronic circuit is needed for this type of
applications.
The GPIO implementation in ProviewR uses the support for GPIO in the Linux kernel. GPIO has to
be specified in the kernel setup.
The rack level is configured with a GPIO object, and the card level with a GPIO_Module object.
Below the card level, the GPIO channels are specified with ChanDi and ChanDo objects. In the
Number attribute of the channel object, the identity of the channel is stated.

Fig GPIO configuration

OneWire
1-Wire is a serial bus system with low speed data transfer.
The rack level is configured with a OneWire object, and below this, the card objects for components
attached to the 1-Wire circuit.
The 1-Wire implementation in ProviewR uses the support for 1-Wire in the Linux kernel. 1-Wire
has to be specified in the kernel setup.
1-Wire devices has an identity that has to be stated in the Address attribute of the card object. The
identity should be stated in decimal form. To retrieve the identity, attach the sensor to the bus, and
list the directory /sys/bus/w1/w1 bus master.
> ls /sys/bus/w1/w1\ bus\ master

28-0000028fa89c

The first number is the family (28) and the last number is the identity (28fa89c) in hexadecimal
form. This should be converted to decimal and inserted into the Address attribute.

OneWire_AiDevice
A generic object for an analog input device connected to the 1-wire bus.
The path of the file containing the sensor value is stated in the DataFile attribute. A %s in the
filename will be replaced by the family and serial number, eg “28-0000028fa89c”.
A search string is stated in ValueSearchString to indicate where in the file the sensor value is
located. When reading the value, the search string is searched for, and and the value is expected to
be found after the search string. If the search string is empty, the value will be read from the
beginning of the file.
The object contains an Ai channel, that should be connected to an Ai signal. The range attributes
should be set in the channel object. If the sensor value in the file is given as a integer value, set
Representation to Int32, if it is given as a float, set Representation to Float32.

Maxim_DS18B20
Card object for a DS18B20 temperature sensor. The identity of the sensor should be stated in the
Address attribute. The object contains a ChanAi object that should be connected to an Ai object.
The rawvalue range is -55000 – 125000 which corresponds to an actvalrange of -55 – 125 C. A
read operation with 12 bit resolution takes about 750 ms.

Fig 1-Wire configuration with a DS18B20 temperature sensor

Adaption of I/O systems

This section will describe how to add new I/O systems to ProviewR.
Adding a new I/O system requires knowledge of how to create classes in ProviewR, and
baseknowledge of c programming.
An I/O system can be added for a single project, for a number of projects, or for the ProviewR base
system. In the latter case you have to install and build from the ProviewR source code.

Overview
The I/O handling in ProviewR consist of a framework that identifies the I/O objects on a process
node, and calls the methods of the I/O objects to fetch or transmit data.

Levels
The I/O objects in a process node are configured in four levels: agent, rack, cards and channels. The
channelobjects can be configured as individual objects or as internal objects in a card object.
To the agent, rack and card objects methods can be registered. The methods can be of type Init,
Close, Read, Write or Swap, and is called by the I/O framework in a specific order. The
functionality of an I/O object consists of the attributes of the object, and the registered methods of
the object. Everything the framework does is to identify the objects, select the objects that are valid
for the current process, and call the methods for these objects in a specific order.
Look at a centralized I/O system with digital inputcards and digital outputcards mounted on the
local bus of the process node. In this case the agent level is superfluous and represented by the
$Node object. Below the $Node object is placed a rack object with an open and a close method. The
open method attaches to the driver of the I/O system. Below the rack object, cardobjects for the Di
and Do cards are configured. The Di card has an Open and a Close method that initiates and closes
down the card, and a Read method the fetches the values of the inputs of the card. The Do card also
has Open and Close methods, and a Write method that transfers suitable values to the outputs of the
card.
If we study another I/O system, Profibus, the levels are not as easy to identify as in the previous
example. Profibus is a distributes system, with a master card mounted on the local PCI-bus, that
communicates via a serial connection to slaves positioned in the plant. Each slave can contain
modules of different type, e.g. one module with 4 Di channels, and one with 2 Ao channels. In this
case the master card represents the agent level, the slaves the rack level and the modules the card
level.
The Agent, rack and card levels are very flexible, and mainly defined by the attributes and the
methods of the classes of the I/O system. This does not apply to the channel level that consists of
the object ChanDi, ChanDo, ChanAi, ChanAo, ChanIi, ChanIo and ChanCo. The task for the
channel object is to represent an input or output value on an I/O unit, and transfer this value to the
signal object that is connected to the channel object. The signal object reside in the plant hierarchy
and represents for example a sensor or an order to an actuator in the plant. As there is a physical
connection between the sensor in the plant and the channel on the I/O card, also the signal objects
are connected to the channel object. Plcprograms, HMI and applications refer to the signal object
that represents the component in the plant, not the channel object, representing a channel on an I/O
unit.

Area objects
Values that are fetched from input units and values that are put out to output units are stored in

special area objects. The area objects are created dynamically in runtime and reside in the system
volume under the hierarchy pwrNode-active-io. There are one area object for each signal type.
Normally you refer to the value of a signal through the ActualValue attribute of the signal. This
attribute actually contains a pointer that points to the area object, and the attribute ValueIndex states
in which index in the area object the signal value can be found. The reason to this construction with
area objects is that during the execution of a logical net, you don't want any changes of signal
values. Each plc-tread therefor takes a copy of the area objects before the start of the execution, and
reads signal values from the copy, calculated output signal values though, are written in the area
object.

I/O objects
The configuration of the I/O is done in the node hierarchy below the $Node object. To each type of
component in the I/O hierarchy you create a class that contains attributes and methods. The methods
are of type Open, Close, Read, Write and Swap, and is called by the I/O framework. The methods
connects to the bus and read data that are transferred to the area objects, or fetches data from the
area objects that are put out on the bus.

Processes
There are two system processes in ProviewR that calls the I/O framework,the plc process and
rt_io_comm. In the plc process each thread makes an initialization of the I/O framework, which
makes it possible to read and write I/O units synchronized with the execution of the plc code for the
threads.

Framework
The main task for the I/O framework is to identify I/O objects and call the methods that are
registered for the objects.
A first initialization is made at start of the runtime environment, when the area objects are created,
and each signal is allocated a place in the area object. The connections between signals and
channels are also checked. When signals and channels are connected in the development
environment, the identity for the channel is stored in the signals SigChanCon attribute. Now the
identity of the signal object is put into the channels SigChanCon attribute, thus making it easy to
find the signal from the channel.
The next initialization is made by every process that wants to connect to the I/O handling. The plc
process and rt_io_comm does this initialization, but also applications that need to read or write
directly to I/O units can connect. At the initialization a data structure i allocated with all agents,
racks, cards and channels that is to be handled by the current process, and the init methods for them
are called. The process then makes a cyclic call of a read and write function, that calls the read and
write methods for the I/O objects in the data structure.

Methods
The task of the methods are to initiate the I/O system, perform reading and writing to the I/O units,
and finally disconnect the I/O system. How these tasks are divided, depend on the construction of
the I/O system. In a centralized I/O on the local bus, methods for the different card objects can
attach the bus and read and write data themselves to their unit, and the methods for the agent and
rack object doesn't have much to do. In a distributed I/O the information for the units are often
gathered in a package, and it is the methods of the agent or rack object that receives the package and
distribute its content on different card objects. The card object methods identifies data for its
channels, performs any conversion and writes or reads data in the area object.

Framework
A process can initiate the I/O framework by calling io_ini(). As argument you send a bitmask that
indicates which process you are, and the threads of the plc process also states the current thread.
io_init() preforms the following

● creates a context.
● allocates a hierarchic data structure of I/O objects with the levels agent, rack, card and

channel. For agents a struct of type io_sAgent is allocated, for racks a struct of type
io_sRack, for cards a struct of type io_sCard, and finally for channels a struct of type
io_sChannel.

● searches for all I/O objects and checks their Process attributes. If the Process attribute
matches the process sent as an argument to io_init(), the object is inserted into the data
structure. If the object has a descendant that matches the process it is also inserted into the
data structure. For the plc process, also the thread argument of io_init() is checked against
the ThreadObject attribute in the I/O object. The result is a linked tree structure with the
agents, racks, card and channel objects that is to be handled by the current process.

● for every I/O objects that is inserted, the methods are identified, and pointers to the method
functions are fetched. Also pointers to the object and the objects name, is inserted in the data
structure.

● the init methods for the I/O objects in the data structure is called. The methods of the first
agent is called first, and then the first rack of the agent, the first card of the rack etc.

When the initialization is done, the process can call io_read() to read from the I/O units that are
present i the data structure, and io_write() to put out values. A thread in the plc process calls
io_read() every scan to fetch new values from the process. Then the plc-code is executed and
io_write() is called to put out new values. The read methods are called in the same order as the init
methods, and the write methods in reverse order.
When the process terminates, io_close() is called, which calls the close methods of the objects in the
data structure. The close methods are called in reverse order compared to the init methods.
The swap method has an event argument that indicates which type of event has occurred, and in
some cases also from where it is called. The swap method is called when emergency break is set
and the IO should stop, and when a soft restart is performed.
When a soft restart is performed, a restart of the I/O handling is also performed. First the close
methods are called, and then, during the time the restart lasts, the swap methods are called, and then
the init methods. The call to the swap methods are done by rt_io_comm.

io_init, function to initiate the framework
pwr_tStatus io_init(
 io_mProcess process,
 pwr_tObjid thread,
 io_tCtx *ctx,
 int relativ_vector,
 float scan_time
);

io_sCtx, the context of the framework
struct io_sCtx {
 io_sAgent *agentlist; /* List of agent structures */
 io_mProcess Process; /* Callers process number */
 pwr_tObjid Thread; /* Callers thread objid */
 int RelativVector; /* Used by plc */
 pwr_sNode *Node; /* Pointer to node object */
 pwr_sClass_IOHandler *IOHandler; /* Pointer to IO Handler object */
 float ScanTime; /* Scantime supplied by caller */
 io_tSupCtx SupCtx; /* Context for supervise object lists */
};

Data structure for an agent
typedef struct s_Agent {

 pwr_tClassId Class; /* Class of agent object */
 pwr_tObjid Objid; /* Objid of agent object */
 pwr_tOName Name; /* Full name of agent object */
 io_mAction Action; /* Type of method defined (Read/Write)*/
 io_mProcess Process; /* Process number */
 pwr_tStatus (* Init) (); /* Init method */
 pwr_tStatus (* Close) (); /* Close method */
 pwr_tStatus (* Read) (); /* Read method */
 pwr_tStatus (* Write) (); /* Write method */
 pwr_tStatus (* Swap) (); /* Write method */
 void *op; /* Pointer to agent object */
 pwr_tDlid Dlid; /* Dlid for agent object pointer */
 int scan_interval; /* Interval between scans */
 int scan_interval_cnt;/* Counter to detect next time to scan */
 io_sRack *racklist; /* List of rack structures */
 void *Local; /* Pointer to method defined data structure*/
 struct s_Agent *next; /* Next agent */
} io_sAgent;

Datastructure for a rack
typedef struct s_Rack {
 pwr_tClassId Class; /* Class of rack object */
 pwr_tObjid Objid; /* Objid of rack object */
 pwr_tOName Name; /* Full name of rack object */
 io_mAction Action; /* Type of method defined (Read/Write)*/
 io_mProcess Process; /* Process number */
 pwr_tStatus (* Init) (); /* Init method */
 pwr_tStatus (* Close) (); /* Close method */
 pwr_tStatus (* Read) (); /* Read method */
 pwr_tStatus (* Write) (); /* Write method */
 pwr_tStatus (* Swap) (); /* Swap method */
 void *op; /* Pointer to rack object */
 pwr_tDlid Dlid; /* Dlid for rack object pointer */
 pwr_tUInt32 size; /* Size of rack data area in byte */
 pwr_tUInt32 offset; /* Offset to rack data area in agent */
 int scan_interval; /* Interval between scans */
 int scan_interval_cnt;/* Counter to detect next time to scan */
 int AgentControlled;/* TRUE if controlled by agent */
 io_sCard *cardlist; /* List of card structures */
 void *Local; /* Pointer to method defined data structure*/
 struct s_Rack *next; /* Next rack */
} io_sRack;

Data structure for a card
typedef struct s_Card {
 pwr_tClassId Class; /* Class of card object */
 pwr_tObjid Objid; /* Objid of card object */
 pwr_tOName Name; /* Full name of card object */
 io_mAction Action; /* Type of method defined (Read/Write)*/
 io_mProcess Process; /* Process number */
 pwr_tStatus (* Init) (); /* Init method */
 pwr_tStatus (* Close) (); /* Close method */
 pwr_tStatus (* Read) (); /* Read method */
 pwr_tStatus (* Write) (); /* Write method */
 pwr_tStatus (* Swap) (); /* Write method */
 pwr_tAddress *op; /* Pointer to card object */
 pwr_tDlid Dlid; /* Dlid for card object pointer */
 pwr_tUInt32 size; /* Size of card data area in byte */
 pwr_tUInt32 offset; /* Offset to card data area in rack */
 int scan_interval; /* Interval between scans */

 int scan_interval_cnt;/* Counter to detect next time to scan */
 int AgentControlled;/* TRUE if controlled by agent */
 int ChanListSize; /* Size of chanlist */
 io_sChannel *chanlist; /* Array of channel structures */
 void *Local; /* Pointer to method defined data structure*/
 struct s_Card *next; /* Next card */
} io_sCard;

Data structure for a channel
typedef struct {
 void *cop; /* Pointer to channel object */
 pwr_tDlid ChanDlid; /* Dlid for pointer to channel */
 pwr_sAttrRef ChanAref; /* AttrRef for channel */
 void *sop; /* Pointer to signal object */
 pwr_tDlid SigDlid; /* Dlid for pointer to signal */
 pwr_sAttrRef SigAref; /* AttrRef for signal */
 void *vbp; /* Pointer to valuebase for signal */
 void *abs_vbp; /* Pointer to absvaluebase (Co only) */
 pwr_tClassId ChanClass; /* Class of channel object */
 pwr_tClassId SigClass; /* Class of signal object */
 pwr_tUInt32 size; /* Size of channel in byte */
 pwr_tUInt32 offset; /* Offset to channel in card */
 pwr_tUInt32 mask; /* Mask for bit oriented channels */
} io_sChannel;

Create I/O objects
For a process node the I/O system is configured in the node hierarchy with objects of type agent,
rack and card. The classes for these objects are created in the class editor. The classes are defined
with a $ClassDef object, a $ObjBodyDef object (RtBody), and below this one $Attribute object for
each attribute of the class. The attributes are determined by the functionality of the methods of the
class, but there are som common attributes (Process, ThreadObject and Description). In the
$ClassDef objects, the Flag word should be stated if it is an agent, rack or card object, and the
methods are defined with specific Method objects.
It is quite common that several classes in an I/O system share attributes and maybe even methods.
An input card that is available with different number of inputs, can often use the same methods.
What differs is the number of channel objects. The other attributes can be stored in a baseclass, that
also contains the methods-objects. The subclasses inherits both the attributes and the methods. The
y are extended with channel objects, that can be put as individual attributes, or, if they are of the
same type, as a vector of channel objects. If the channels are put as a vector or as individual
attributes, depend on the how the reference in the plc documents should look. With an array you get
an index starting from zero, with individual objects you can control the naming of the attributes
yourself.
In the example below a baseclass is viewed in Fig Example of a baseclass and a subclass in Fig
Example of a cardclass with a superclass and 32 channel objects. The baseclass Ssab_BaseDiCard
contains all the attributes used by the I/O methods and the I/O framework. The subclass
Ssab_DI32D contains the Super attribute with TypeRef Sasb_BaseDiCard, and 32 channel
attributes of type ChanDi. As the index for this card type by tradition starts from 1, the channels are
put as individual attributes, but they could also be an array of type ChanDi.

Fig Example of a baseclass for a card

Fig Example of a cardclass with a superclass an 32 channel objecs

Flags
In the Flag attribute of the $ClassDef object, the IOAgent bit should be se for agent classes, the
IORack bit for rack classes and the IOCard bit for card classes.

Fig IORack bit set for a rack class

Attributes

Description
Attribute of type pwrs:Type-$String80. The content is displayed as description in the navigator.

Process
Attribute of type pwrs:Type-$UInt32. States which process should handle the unit.

ThreadObject
Attribute of type pwrs:Type-$Objid. States which thread in the plcprocess should handle the I/O.

Fig Standard attributes

Method objects
The method objects are used to identify the methods of the class. The methods consist of c-
functions that are registered in the c-code with a name, a string that consists of class name and
method name, e.g. “Ssab_AIuP-IoCardInit”. The name is also stored in a method object in the class
description, and makes is possible for the I/O framework to find the correct c-function for the class.
Below the $ClassDef object, a $RtMethod object is placed with the name IoMethods. Below this
one $Method object is placed for each method that is to be defined for the class. In the attribute
MethodName the name of the method is stated.

Agents
For agents, $Method objects with the name IoAgentInit, IoAgentClose, IoAgentRead and
IoAgentWrite are created.

Racks
For racks, $Method objects with the names IoRackInit, IoRackClose, IoRackRead och IoRackWrite
are created.

Cards
For cards $Method objects with the names IoCardInit, IoCardClose, IoCardRead och IoCardWrite
are created.

Fig Method objects

Connect-method for a ThreadObject
When the thread object in attribute ThreadObject should be stated for an I/O object, it can be typed
manually, but one can also specify a menu method that inserts the selected thread object into the
attribute. The method is activated from the popup menu of the I/O object in the configurator.
The method is defined in the class description with a $Menu and a $MenuButton object, se Fig
Connect Metod. Below the $ClassDef object a $Menu object with the name ConfiguratorPoson is
placed. Below this, another $Menu object named Pointed, and below this a $MenuButton object
named Connect. State ButtonName (text in the popup menu for the method), MethodName and
FilterName. The method and the filter used is defined in the $Objid class. MethodName should be
$Objid-Connect and FilterName $Objid-IsOkConnected.

Fig Connect method

Methods
For the agent, rack and card classes you write methods in the programming language c. A method is
a c function that is common for a class (or several classes) and that is called by the I/O framework
for all instances of the class. To keep the I/O handling as flexible as possible, the methods are doing

most of the I/O handling work. The task for the framework is to identify the various I/O objects and
to call the methods for these, and to supply the methods with proper data structures.
There are five types of methods: Init, Close, Read, Write and Swap.

● Init-method is called at initialization of the I/O handling, i.e. at start up of the runtime
environment and at soft restart.

● Close-method is called when the I/O handling is terminated, i.e. when the runtime
environment is stopped or at a soft restart.

● Read-method is called cyclic when its time to read the input cards.
● Write-method is called cyclic when its time to put out values to the output cards.
● Swap-method is called during a soft restart and when emergency break is set.

Local data structure
In the data structures io_sAgent, io_sRack and io_sCard there is an element, Local, where the
method can store a pointer to local data for an I/O unit. Local data is allocated by the init method
and then available at each method call.

Agent methods

IoAgentInit
Initialization method for an agent.

static pwr_tStatus IoAgentInit(io_tCtx ctx,
 io_sAgent *ap)

IoAgentClose
Close method för en agent.
static pwr_tStatus IoAgentClose(io_tCtx ctx,
 io_sAgent *ap)

IoAgentRead
Read method for an agent.
static pwr_tStatus IoAgentRead(io_tCtx ctx,
 io_sAgent *ap)

IoAgentWrite
Write method for an agent.
static pwr_tStatus IoAgentWrite(io_tCtx ctx,
 io_sAgent *ap)

IoAgentSwap
Swap method for an agent.
static pwr_tStatus IoAgentSwap(io_tCtx ctx,
 io_sAgent *ap,
 io_eEvent event)

Rack methods

IoRackInit
static pwr_tStatus IoRackInit(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp)

IoRackClose
static pwr_tStatus IoRackClose(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp)

IoRackRead
static pwr_tStatus IoRackRead(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp)

IoRackWrite
static pwr_tStatus IoRackWrite(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp)

IoRackSwap
static pwr_tStatus IoRackSwap(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_eEvent event)

Card methods

IoCardInit
static pwr_tStatus IoCardInit(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

IoCardClose
static pwr_tStatus IoCardClose(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

IoCardRead
static pwr_tStatus IoCardRead(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

IoCardWrite
static pwr_tStatus IoCardWrite(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

IoCardSwap
static pwr_tStatus IoCardSwap(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp,
 io_eEvent event)

Method registration
The methods for a class have to be registered, so that you from the the method object in the class
description can find the correct functions for a class. Below is an example of how the methods
IoCardInit, IoCardClose and IoCardRead are registered for the class Ssab_AiuP.
pwr_dExport pwr_BindIoMethods(Ssab_AiuP) = {
 pwr_BindIoMethod(IoCardInit),
 pwr_BindIoMethod(IoCardClose),
 pwr_BindIoMethod(IoCardRead),
 pwr_NullMethod
};

Class registration
Also the class has to be registered. This is done in different ways dependent on whether the I/O
system is implemented as a module in the ProviewR base system, or as a part of a project.

Module in ProviewR base system
If the I/O system are implemented as a module in the ProviewR base system, you create a file
lib/rt/src/rt_io_'modulename'.meth, and list all the classes that have registered methods in
this file.

Project
If the I/O system is a part of a project, the registration is made in a c module that is linked with the
plc program. In the example below, the classes Ssab_Rack and Ssab_AiuP are registered in the file
ra_plc_user.c
#include "pwr.h"
#include "rt_io_base.h"

pwr_dImport pwr_BindIoUserMethods(Ssab_Rack);
pwr_dImport pwr_BindIoUserMethods(Ssab_Aiup);

pwr_BindIoUserClasses(User) = {
 pwr_BindIoUserClass(Ssab_Rack),
 pwr_BindIoUserClass(Ssab_Aiup),
 pwr_NullClass
};

The file is compiled and linked with the plc-program by creating a link file on $pwrp_exe. The file
should be named plc_'nodename'_'busnumber'_'plcname'.opt, e.g.
plc_mynode_0517_plc.opt. The content of the file is sent as input data to the linker, ld, and
you must also add the module with the methods of the class. In the example below these modules
are supposed to be found in the archive $pwrp_lib/libpwrp.a.
$pwr_obj/rt_io_user.o -lpwrp -lpwr_rt -lpwr_usbio_dummy -lpwr_usb_dummy -lpwr_pnak_dummy
-lpwr_cifx_dummy -lpwr_nodave_dummy -lpwr_epl_dummy

Example of rack methods
#include <stdio.h>
#include <errno.h>

#include <unistd.h>
#include <fcntl.h>

#include "pwr.h"
#include "pwr_baseclasses.h"
#include "pwr_ssaboxclasses.h"
#include "rt_io_base.h"
#include "rt_errh.h"
#include "rt_io_rack_init.h"
#include "rt_io_m_ssab_locals.h"
#include "rt_io_msg.h"

/* Init method */
static pwr_tStatus IoRackInit(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp)

{
 io_sRackLocal *local;

 /* Open Qbus driver */
 local = calloc(1, sizeof(*local));
 rp->Local = local;

 local->Qbus_fp = open("/dev/qbus", O_RDWR);
 if (local->Qbus_fp == -1) {
 errh_Error("Qbus initialization error, IO rack %s", rp->Name);
 ctx->Node->EmergBreakTrue = 1;
 return IO__ERRDEVICE;
 }

 errh_Info("Init of IO rack %s", rp->Name);
 return 1;
}

/* Close method */
static pwr_tStatus IoRackClose(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp)

{
 io_sRackLocal *local;

 /* Close Qbus driver */
 local = rp->Local;

 close(local->Qbus_fp);
 free((char *)local);

 return 1;
}

/* Every method to be exported to the workbench should be registered here. */

pwr_dExport pwr_BindIoMethods(Rack_SSAB) = {
 pwr_BindIoMethod(IoRackInit),
 pwr_BindIoMethod(IoRackClose),
 pwr_NullMethod
};

Example of the methods of a digital input card
#include <stdio.h>

#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>

#include "pwr.h"
#include "rt_errh.h"
#include "pwr_baseclasses.h"
#include "pwr_ssaboxclasses.h"
#include "rt_io_base.h"
#include "rt_io_msg.h"
#include "rt_io_filter_di.h"
#include "rt_io_ssab.h"
#include "rt_io_card_init.h"
#include "rt_io_card_close.h"
#include "rt_io_card_read.h"
#include "qbus_io.h"
#include "rt_io_m_ssab_locals.h"

/* Local data */
typedef struct {

unsigned int Address[2];
int Qbus_fp;
struct {
 pwr_sClass_Di *sop[16];
 void *Data[16];
 pwr_tBoolean Found;
} Filter[2];
pwr_tTime ErrTime;

} io_sLocal;

/* Init method */
static pwr_tStatus IoCardInit(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 pwr_sClass_Ssab_BaseDiCard *op;
 io_sLocal *local;
 int i, j;

 op = (pwr_sClass_Ssab_BaseDiCard *) cp->op;
 local = calloc(1, sizeof(*local));
 cp->Local = local;

 errh_Info("Init of di card '%s'", cp->Name);

 local->Address[0] = op->RegAddress;
 local->Address[1] = op->RegAddress + 2;
 local->Qbus_fp = ((io_sRackLocal *)(rp->Local))->Qbus_fp;

 /* Init filter */
 for (i = 0; i < 2; i++) {
 /* The filter handles one 16-bit word */
 for (j = 0; j < 16; j++)
 local->Filter[i].sop[j] = cp->chanlist[i*16+j].sop;
 io_InitDiFilter(local->Filter[i].sop, &local->Filter[i].Found,

local->Filter[i].Data, ctx->ScanTime);
 }

 return 1;

}

/* Close method */
static pwr_tStatus IoCardClose(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 io_sLocal *local;
 int i;

 local = (io_sLocal *) cp->Local;

 errh_Info("IO closing di card '%s'", cp->Name);

 /* Free filter data */
 for (i = 0; i < 2; i++) {
 if (local->Filter[i].Found)
 io_CloseDiFilter(local->Filter[i].Data);
 }
 free((char *) local);

 return 1;
}

/* Read method */
static pwr_tStatus IoCardRead(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 io_sLocal *local;
 io_sRackLocal *r_local = (io_sRackLocal *)(rp->Local);
 pwr_tUInt16 data = 0;
 pwr_sClass_Ssab_BaseDiCard *op;
 pwr_tUInt16 invmask;
 pwr_tUInt16 convmask;
 int i;
 int sts;
 qbus_io_read rb;
 pwr_tTime now;

 local = (io_sLocal *) cp->Local;
 op = (pwr_sClass_Ssab_BaseDiCard *) cp->op;

 for (i = 0; i < 2; i++) {
 if (i == 0) {
 convmask = op->ConvMask1;
 invmask = op->InvMask1;
 }
 else {
 convmask = op->ConvMask2;
 invmask = op->InvMask2;
 if (!convmask)
 break;
 if (op->MaxNoOfChannels == 16)
 break;
 }

 /* Read from local Q-bus */
 rb.Address = local->Address[i];
 sts = read(local->Qbus_fp, &rb, sizeof(rb));

 data = (unsigned short) rb.Data;

 if (sts == -1) {
 /* Increase error count and check error limits */
 clock_gettime(CLOCK_REALTIME, &now);

 if (op->ErrorCount > op->ErrorSoftLimit) {
 /* Ignore if some time has expired */
 if (now.tv_sec - local->ErrTime.tv_sec < 600)
 op->ErrorCount++;
 }
 else
 op->ErrorCount++;
 local->ErrTime = now;

 if (op->ErrorCount == op->ErrorSoftLimit)
 errh_Error("IO Error soft limit reached on card '%s'", cp->Name);
 if (op->ErrorCount >= op->ErrorHardLimit)
 {
 errh_Error("IO Error hard limit reached on card '%s', IO stopped", cp-
>Name);
 ctx->Node->EmergBreakTrue = 1;
 return IO__ERRDEVICE;
 }
 continue;
 }

 /* Invert */
 data = data ^ invmask;

 /* Filter */
 if (local->Filter[i].Found)
 io_DiFilter(local->Filter[i].sop, &data, local->Filter[i].Data);

 /* Move data to valuebase */
 io_DiUnpackWord(cp, data, convmask, i);
 }
 return 1;
}

/* Every method to be exported to the workbench should be registred here. */

pwr_dExport pwr_BindIoMethods(Ssab_Di) = {
 pwr_BindIoMethod(IoCardInit),
 pwr_BindIoMethod(IoCardClose),
 pwr_BindIoMethod(IoCardRead),
 pwr_NullMethod
};

Example of the methods of a digital output card
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>

#include "pwr.h"
#include "rt_errh.h"
#include "pwr_baseclasses.h"
#include "pwr_ssaboxclasses.h"

#include "rt_io_base.h"
#include "rt_io_msg.h"
#include "rt_io_filter_po.h"
#include "rt_io_ssab.h"
#include "rt_io_card_init.h"
#include "rt_io_card_close.h"
#include "rt_io_card_write.h"
#include "qbus_io.h"
#include "rt_io_m_ssab_locals.h"

/* Local data */
typedef struct {

unsigned int Address[2];
int Qbus_fp;
struct {
 pwr_sClass_Po *sop[16];
 void *Data[16];
 pwr_tBoolean Found;
} Filter[2];
pwr_tTime ErrTime;

} io_sLocal;

/* Init method */
static pwr_tStatus IoCardInit(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 pwr_sClass_Ssab_BaseDoCard *op;
 io_sLocal *local;
 int i, j;

 op = (pwr_sClass_Ssab_BaseDoCard *) cp->op;
 local = calloc(1, sizeof(*local));
 cp->Local = local;

 errh_Info("Init of do card '%s'", cp->Name);

 local->Address[0] = op->RegAddress;
 local->Address[1] = op->RegAddress + 2;
 local->Qbus_fp = ((io_sRackLocal *)(rp->Local))->Qbus_fp;

 /* Init filter for Po signals */
 for (i = 0; i < 2; i++) {
 /* The filter handles one 16-bit word */
 for (j = 0; j < 16; j++) {
 if (cp->chanlist[i*16+j].SigClass == pwr_cClass_Po)
 local->Filter[i].sop[j] = cp->chanlist[i*16+j].sop;
 }
 io_InitPoFilter(local->Filter[i].sop, &local->Filter[i].Found,

local->Filter[i].Data, ctx->ScanTime);
 }

 return 1;
}

/* Close method */
static pwr_tStatus IoCardClose(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{

 io_sLocal *local;
 int i;

 local = (io_sLocal *) cp->Local;

 errh_Info("IO closing do card '%s'", cp->Name);

 /* Free filter data */
 for (i = 0; i < 2; i++) {
 if (local->Filter[i].Found)
 io_ClosePoFilter(local->Filter[i].Data);
 }
 free((char *) local);

 return 1;
}

/* Write method */
static pwr_tStatus IoCardWrite(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 io_sLocal *local;
 io_sRackLocal *r_local = (io_sRackLocal *)(rp->Local);
 pwr_tUInt16 data = 0;
 pwr_sClass_Ssab_BaseDoCard *op;
 pwr_tUInt16 invmask;
 pwr_tUInt16 testmask;
 pwr_tUInt16 testvalue;
 int i;
 qbus_io_write wb;
 int sts;
 pwr_tTime now;

 local = (io_sLocal *) cp->Local;
 op = (pwr_sClass_Ssab_BaseDoCard *) cp->op;

 for (i = 0; i < 2; i++) {
 if (ctx->Node->EmergBreakTrue && ctx->Node->EmergBreakSelect == FIXOUT) {
 if (i == 0)
 data = op->FixedOutValue1;
 else
 data = op->FixedOutValue2;
 }
 else
 io_DoPackWord(cp, &data, i);

 if (i == 0) {
 testmask = op->TestMask1;
 invmask = op->InvMask1;
 }
 else {
 testmask = op->TestMask2;
 invmask = op->InvMask2;
 if (op->MaxNoOfChannels == 16)
 break;
 }

 /* Invert */
 data = data ^ invmask;

 /* Filter Po signals */
 if (local->Filter[i].Found)
 io_PoFilter(local->Filter[i].sop, &data, local->Filter[i].Data);

 /* Testvalues */
 if (testmask) {
 if (i == 0)
 testvalue = op->TestValue1;
 else
 testvalue = op->TestValue2;
 data = (data & ~ testmask) | (testmask & testvalue);
 }

 /* Write to local Q-bus */
 wb.Data = data;
 wb.Address = local->Address[i];
 sts = write(local->Qbus_fp, &wb, sizeof(wb));

 if (sts == -1) {
 /* Increase error count and check error limits */
 clock_gettime(CLOCK_REALTIME, &now);

 if (op->ErrorCount > op->ErrorSoftLimit) {
 /* Ignore if some time has expired */
 if (now.tv_sec - local->ErrTime.tv_sec < 600)
 op->ErrorCount++;
 }
 else
 op->ErrorCount++;
 local->ErrTime = now;

 if (op->ErrorCount == op->ErrorSoftLimit)
 errh_Error("IO Error soft limit reached on card '%s'", cp->Name);
 if (op->ErrorCount >= op->ErrorHardLimit)
 {
 errh_Error("IO Error hard limit reached on card '%s', IO stopped", cp-
>Name);
 ctx->Node->EmergBreakTrue = 1;
 return IO__ERRDEVICE;
 }
 continue;
 }
 }
 return 1;
}

/* Every method to be exported to the workbench should be registred here. */
pwr_dExport pwr_BindIoMethods(Ssab_Do) = {
 pwr_BindIoMethod(IoCardInit),
 pwr_BindIoMethod(IoCardClose),
 pwr_BindIoMethod(IoCardWrite),
 pwr_NullMethod
};

Step by step description
This sections contains an example of how to attach an I/O system to ProviewR.
The I/O system in the example is USB I/O manufactured by Motion Control. It consists of a card
with 21 channels of different type. The first four channels (A1 – A4) are Digital outputs of relay

type for voltage up to 230 V. The next four channels (A5 – A8) are Digital inputs with
optocouplers. Next eight channels (B1 – B8) can either be configured as digital outputs, digital
inputs or analog inputs. The last 5 channels (C1 – C5) can be digital outputs or inputs, where C4
and C5 also can be configured as analog outputs. In our example, not wanting the code to be too
complex, we lock the configuration to: channel 0-3 Do, 4-7 Di, 8-15 Ai, 16-18 Di and 19-20 Ao.

Attach to a project
In the first example we attach the I/O system to a project. We will create a class volume, and insert
rack and card classes into it. We will write I/O methods for the classes and link them to the plc
program. We create I/O objects i the node hierarchy in the root volume, and install the driver for
USB I/O, and start the I/O handling on the process station.

Create classes

Create a class volume
The first step is to create classes for the I/O objects. The classes are defined in class volumes, and
first we have to create a class volume in the project. The class volume first has to registered in the
GlobalVolumeList. We start the administrator with

> pwra
and opens the GlobalVolumeList by activating File/Open/GlobalVolumeList in the menu. We enter
edit mode and create a VolumeReg object with the name CVolMerk1. The volume identity for user
class volumes should chosen in the interval 0.0.2-249.1-254 and we choose 0.0.99.20 as the identity
for our class volume. In the attribute Project the name of our project is stated, mars2.

Fig Classvolume registration

Open the classvolume
Next step is to configure and create the class volume in the project. This is done in the directory
volume.
We enter the directory volume

> pwrs
in edit mode and create an object of type ClassVolumeConfig in the volume hierarchy. The object is
named with the volume name CVolMerk1. After saving and leaving edit mode we can open the

class volume by activating OpenClassEditor... in the popup menu of the object.

Fig Configuration of the classvolume in the directory volume and start of classeditor

In the classeditor classes are defined with specific class definition objects. We are going to create
two classes, a rack class, MotionControl_USB and a card class MotionControl_USBIO.
Note! The class names has to be unique, which actually is not true for these names any more as they
exist in the volume OtherIO.

Create a rack class
In our case the card class will do all the work and contain all the methods. The rack class is there
only to inhabit the rack level, and doesn't have any methods or attributes. We will only put a
description attribute in the class. We create a $ClassHier object, and under this a $ClassDef object
for the class rack. The object is named MotionControl_USB and we set the IORack and IO bits in
the Flag attribute.

Fig The IO and IORack bits in Flags
Below the $ClassDef object the attributes of the class are defined. We create a $ObjBodyDef object
and below this a $Attribute object with the name Description and with type (TypeRef) pwrs:Type-
$String80.

Fig Attribute object

Create a card class
There is a baseclass for card objects, Basecomponent:BaseIOCard, that we can use, and that
contains the most common attributes in a card object. We create another $ClassDef object with the
name MotionControl_USBIO, and set the IOCard and IO bits in the Flags attribute.

Fig The IO and IOCard bits in Flags

We create an $ObjBodyDef object and an $Attribute object to state BaseIOCard as a superclass.
The attribute is named Super and in TypeRef Basecomponent:Class-BaseIOCard is set. We will
now inherit all attributes and methods defined in the class BaseIOCard.

Fig Configration of the superclass BaseIOCard

We add another attribute for the card status, and for the status we create an enumeration type,
MotionControl_StatusEnum, that contains the various status codes that the status attribute can
contain.

Fig Definition of an enumeration type

The type of the status attribute is set to the created status type, and in Flags, the bits State and
NoEdit is set, as this attribute is not to be set in the configurator, but will be given a value in the
runtime environment.

Fig Status attribute of enumeration type
Normally you also add attributes for the channel objects in the card class, but as the USB I/O device
is so flexible, the same channel can be configured as a Di, Do or Ai channel, we choose not to place
the channel objects as attributes. They will be configured as individual objects and placed as
children to the card object in the root volume.
USB I/O contains a watchdog that will reset the unit if it is not written to within a certain time. We
also add the attribute WatchdogTime to configure the timeout time.
When a class is saved for the first time, a Template object is created under the $ClassDef object.
This object is an instance of the actual class where you can set default values of the attributes. We
state Specification, insert an URL to the data sheet, and set Process to 1. We also set
MaxNoOfChannels to 21, as this card has 21 channels.

Fig Template object
Next step is to add the methods to the class description. While the card contains both inputs and
outputs, we need to create Init, Close, Read and Write methods. These will be configured with
method objects of type $Method. First we put a $RtMethod object, named IoMethods, under the
$ClassDef object. Below this, we create one $RtMethod object for each method. The objects are
named IoCardInit, IoCardClose, IoCardRead and IoCardWrite. In the attribute MethodName we
state the string with witch the methods will be registered in the c-code, i.e.
“MotionControl_USBIO-IoCardInit”, etc.

Fig I/O method configuration

From the superclass BaseIOCard we inherit a method to connect the object to a plc thread in the
configurator.

Build the classvolume
Now the classes are created, and we save, leave edit mode, and create loadfiles for the class volume
by activating Functions/Build Volume in the menu. An include-file containing c structs for the
classes, $pwrp_inc/pwr_cvolmerk1classes.h, is also created when building the volume.

Install the driver
Download the driver and unpack the tar-file for the driver

> tar -xvzf usbio.tar.tz
Build the driver with make

> cd usbio/driver/linux-2.6

> make

Install the driver usbio.ko as root

> insmod usbio.ko
Allow all users to read and write to the driver

> chmod a+rw /dev/usbio0

Write methods
The next step is to write the c-code for the methods.
The c-file ra_io_m_motioncontrol_usbio.c are created on $pwrp_appl.
As ProviewR has a GPL license, also the code for the methods has to be GPL licensed if the
program is distributed to other parties. We therefor put a GPL header in the beginning of the file.
To simplify the code we limit our use of USB I/O to a configuration where channel 0-3 are digital
outputs, 4-7 digital inputs, 8-15 analog inputs, 16-18 digital inputs and 19-20 analog outputs.
ra_io_m_motioncontrol_usbio.c
/*
 * ProviewR Id
 * Copyright (C) 2005 SSAB Oxelösund.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with the program, if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include "pwr.h"
#include "pwr_basecomponentclasses.h"
#include "pwr_cvolmerk1classes.h"
#include "rt_io_base.h"
#include "rt_io_card_init.h"
#include "rt_io_card_close.h"
#include "rt_io_card_read.h"
#include "rt_io_card_write.h"
#include "rt_io_msg.h"
#include "libusbio.h"

typedef struct {
 int USB_Handle;
} io_sLocal;

// Init method
static pwr_tStatus IoCardInit(io_tCtx ctx,
 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)
{
 int i;
 int timeout;
 io_sLocal *local;
 pwr_sClass_MotionControl_USBIO *op = (pwr_sClass_MotionControl_USBIO *)cp->op;

 local = (io_sLocal *) calloc(1, sizeof(io_sLocal));
 cp->Local = local;

 // Configure 4 Do and 4 Di on Port A

 op->Status = USBIO_ConfigDIO(&local->USB_Handle, 1, 240);
 if (op->Status)
 errh_Error("IO Init Card '%s', Status %d", cp->Name, op->Status);

 // Configure 8 Ai on Port B
 op->Status = USBIO_ConfigAI(&local->USB_Handle, 8);
 if (op->Status)
 errh_Error("IO Init Card '%s', Status %d", cp->Name, op->Status);

 // Configure 3 Di and 2 Ao on Port C
 op->Status = USBIO_ConfigDIO(&local->USB_Handle, 3, 7);
 if (op->Status)
 errh_Error("IO Init Card '%s', Status %d", cp->Name, op->Status);
 op->Status = USBIO_ConfigAO(&local->USB_Handle, 3);
 if (op->Status)
 errh_Error("IO Init Card '%s', Status %d", cp->Name, op->Status);

 // Calculate conversion coefficients for Ai
 for (i = 8; i < 16; i++) {
 if (cp->chanlist[i].cop &&

 cp->chanlist[i].sop &&
 cp->chanlist[i].ChanClass == pwr_cClass_ChanAi)

 io_AiRangeToCoef(&cp->chanlist[i]);
 }

 // Calculate conversion coefficients for Ao
 for (i = 19; i < 21; i++) {
 if (cp->chanlist[i].cop &&

 cp->chanlist[i].sop &&
 cp->chanlist[i].ChanClass == pwr_cClass_ChanAo)

 io_AoRangeToCoef(&cp->chanlist[i]);
 }

 // Configure Watchdog
 timeout = 1000 * op->WatchdogTime;
 op->Status = USBIO_ConfigWatchdog(&local->USB_Handle, 1, timeout, 1,
 port_mask, port, 3);

 errh_Info("Init of USBIO card '%s'", cp->Name);

 return IO__SUCCESS;
}

// Close method
static pwr_tStatus IoCardClose(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 free(cp->Local);
 return IO__SUCCESS;
}

// Read Method
static pwr_tStatus IoCardRead(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 io_sLocal *local = cp->Local;

 pwr_sClass_MotionControl_USBIO *op = (pwr_sClass_MotionControl_USBIO *)cp->op;
 int value = 0;
 int i;
 unsigned int m;
 pwr_tUInt32 error_count = op->Super.ErrorCount;

 // Read Di on channel 4 - 8
 op->Status = USBIO_ReadDI(&local->USB_Handle, 1, &value);
 if (op->Status)
 op->Super.ErrorCount++;
 else {
 // Set Di value in area object
 m = 1 << 4;
 for (i = 4; i < 8; i++) {

*(pwr_tBoolean *)cp->chanlist[i].vbp = ((value & m) != 0);
m = m << 1;

 }
 }

 // Read Ai on channel 8 - 16
 for (i = 0; i < 8; i++) {
 io_sChannel *chanp = &cp->chanlist[i + 8];
 pwr_sClass_ChanAi *cop = (pwr_sClass_ChanAi *)chanp->cop;
 pwr_sClass_Ai *sop = (pwr_sClass_Ai *)chanp->sop;

 if (cop->CalculateNewCoef)
// Request to calculate new coefficients

 io_AiRangeToCoef(chanp);

 op->Status = USBIO_ReadADVal(&local->USB_Handle, i + 1, &ivalue);
 if (op->Status)

 op->Super.ErrorCount++;
else {
 io_ConvertAi(cop, ivalue, &actvalue);

// Filter the Ai value
if (sop->FilterType == 1 &&
 sop->FilterAttribute[0] > 0 &&
 sop->FilterAttribute[0] > ctx->ScanTime) {
 actvalue = *(pwr_tFloat32 *)chanp->vbp +

 ctx->ScanTime / sop->FilterAttribute[0] *
 (actvalue - *(pwr_tFloat32 *)chanp->vbp);
}

 // Set value in area object
*(pwr_tFloat32 *)chanp->vbp = actvalue;
sop->SigValue = cop->SigValPolyCoef1 * ivalue + cop->SigValPolyCoef0;
sop->RawValue = ivalue;

 }
 }

 // Check Error Soft and Hard Limit

 // Write warning message if soft limit is reached
 if (op->Super.ErrorCount >= op->Super.ErrorSoftLimit &&
 error_count < op->Super.ErrorSoftLimit)
 errh_Warning("IO Card ErrorSoftLimit reached, '%s'", cp->Name);

 // Stop I/O if hard limit is reached
 if (op->Super.ErrorCount >= op->Super.ErrorHardLimit) {
 errh_Error("IO Card ErrorHardLimit reached '%s', IO stopped", cp->Name);
 ctx->Node->EmergBreakTrue = 1;

 return IO__ERRDEVICE;
 }
 return IO__SUCCESS;
}

// Write method
static pwr_tStatus IoCardWrite(io_tCtx ctx,

 io_sAgent *ap,
 io_sRack *rp,
 io_sCard *cp)

{
 io_sLocal *local = cp->Local;
 pwr_sClass_MotionControl_USBIO *op = (pwr_sClass_MotionControl_USBIO *)cp->op;
 int value = 0;
 float fvalue;
 int i;
 unsigned int m;
 pwr_tUInt32 error_count = op->Super.ErrorCount;
 pwr_sClass_ChanAo *cop;

 // Write Do on channel 1 - 4
 m = 1;
 value = 0;
 for (i = 0; i < 4; i++) {
 if (*(pwr_tBoolean *)cp->chanlist[i].vbp)

value |= m;
 }
 m = m << 1;
 }
 op->Status = USBIO_WriteDO(&local->USB_Handle, 1, value);
 if (op->Status) op->Super.ErrorCount++;

 // Write Ao on channel 19 and 20
 if (cp->chanlist[19].cop &&

 cp->chanlist[19].sop &&
 cp->chanlist[19].ChanClass == pwr_cClass_ChanAo) {

 cop = (pwr_sClass_ChanAo *)cp->chanlist[19].cop;

 if (cop->CalculateNewCoef)
// Request to calculate new coefficients
io_AoRangeToCoef(&cp->chanlist[19]);

 fvalue = *(pwr_tFloat32 *)cp->chanlist[19].vbp * cop->OutPolyCoef1 +
 cop->OutPolyCoef0;
 op->Status = USBIO_WriteAO(&local->USB_Handle, 1, fvalue);
 if (op->Status) op->Super.ErrorCount++;
 }

 if (cp->chanlist[20].cop &&

 cp->chanlist[20].sop &&
 cp->chanlist[20].ChanClass == pwr_cClass_ChanAo) {

 cop = (pwr_sClass_ChanAo *)cp->chanlist[20].cop;

 if (cop->CalculateNewCoef)
// Request to calculate new coefficients
io_AoRangeToCoef(&cp->chanlist[20]);

 fvalue = *(pwr_tFloat32 *)cp->chanlist[20].vbp * cop->OutPolyCoef1 +
 cop->OutPolyCoef0;
 op->Status = USBIO_WriteAO(&local->USB_Handle, 2, fvalue);
 if (op->Status) op->Super.ErrorCount++;

 }

 // Check Error Soft and Hard Limit

 // Write warning message if soft limit is reached
 if (op->Super.ErrorCount >= op->Super.ErrorSoftLimit &&
 error_count < op->Super.ErrorSoftLimit)
 errh_Warning("IO Card ErrorSoftLimit reached, '%s'", cp->Name);

 // Stop I/O if hard limit is reached
 if (op->Super.ErrorCount >= op->Super.ErrorHardLimit) {
 errh_Error("IO Card ErrorHardLimit reached '%s', IO stopped", cp->Name);
 ctx->Node->EmergBreakTrue = 1;
 return IO__ERRDEVICE;
 }

 return IO__SUCCESS;
}

// Every method should be registred here

pwr_dExport pwr_BindIoUserMethods(MotionControl_USBIO) = {
 pwr_BindIoUserMethod(IoCardInit),
 pwr_BindIoUserMethod(IoCardClose),
 pwr_BindIoUserMethod(IoCardRead),
 pwr_BindIoUserMethod(IoCardWrite),
 pwr_NullMethod
};

Class registration
To make it possible for the I/O framework to find the methods of the class, the class has to be
registered. This is done by creating the file $pwrp_appl/rt_io_user.c. You use the macros
pwr_BindIoUserMethods and pwr_BindIoUserClass for each class that contains methods.
rt_io_user.c
#include "pwr.h"
#include "rt_io_base.h"

pwr_dImport pwr_BindIoUserMethods(MotionControl_USBIO);

pwr_BindIoUserClasses(User) = {
 pwr_BindIoUserClass(MotionControl_USBIO),
 pwr_NullClass
};

Makefile
To compile the c-files we create a make-file on $pwrp_appl, $pwrp_appl/makefile. This will
compile ra_io_m_motioncontro_usbio.c and rt_io_user.c, and place the object
modules on the directory $pwrp_obj.
makefile
mars2_top : mars2

include $(pwr_exe)/pwrp_rules.mk

mars2_modules = $(pwrp_obj)/ra_io_m_motioncontrol_usbio.o \
 $(pwrp_obj)/rt_io_user.o

Main rule

mars2 : $(mars2_modules)
 @ echo "****** Mars2 modules built ******"

Modules

$(pwrp_obj)/ra_io_m_motioncontrol_usbio.o : \
$(pwrp_appl)/ra_io_m_motioncontrol_usbio.c \
$(pwrp_inc)/pwr_cvolmerk1classes.h

$(pwrp_obj)/rt_io_user.o : $(pwrp_appl)/rt_io_user.c

Build options
We choose to call the methods from the plc process, and have to link the plc program with the
object modules of the methods. To do this, we create a BuildOptions object under the NodeConfig
object in the directory volume. In ObjectModules[0] we insert the created object file
‘$pwrp_obj/rt_io_m_motioncontrol_usbio.o’, and in ObjectModules[1] ‘$pwrp_obj/rt_io_user.o’.
We also have to add the archive with the USB I/O driver API, libusbio.a. This is specified in
Archives[0] with ‘usbio’, without extension and the ‘lib’ prefix.

Configure the node hierarchy
Now its time to configure the I/O objects in the node hierarchy with objects of the classes that we
have created.
The root volume in our project is VolMerk1 and we open the configurator with

> pwrs volmerk1
In the palette to the left, under the map AllClasses we find the class volume of the project, and
under this the two classes for the USB I/O that we have created. Below the $Node object we place a
rack-object of class MotionControl_USB, and below this a card object of class
MotionControl_USBIO. As the channel objects are not internal objects in the card object, we have
to create channel objects for the channels that we are going to use, below the card object. See the
result in Fig The Node hierarchy.

Fig The Node hierarchy

We set the attribute Number, which states the index in the channel list, to 0 for the first channel
object, 1 for the second etc. We set Process to 1 in the rack and card objects, and connects these
objects to a plc thread by selecting a PlcThread object, and activating Connect PlcThread in the
popup menu for the rack and card object.
For the analog channels, ranges for conversion to/from ActualValue unit, has to be stated. The
RawValue range for Ai channels are 0-1023, and the signal range 0-5 V. We configure the channels
with an ActualValue range 0-100 in Fig Ai channel.

Fig Ai channel
When reading the Ao channels, you receive the signal value 0-5 V, and a configuration for
ActualValue range 0-100 can be seen in Fig Ao channel.

Fig Ao channel
We also have to create signal objects in the plant hierarchy of types Di, Do, Ai and Ao, and connect
these to each channel respectively. There also has to be a PlcPgm on the selected thread, to really
create a thread in runtime. The remaining activities now are to build the node, distribute, check the
linkage of the USB I/O device, connect it to the USB port and start ProviewR.

	About this Guide
	Introduction
	Overview
	Levels
	Configuration

	I/O System
	PSS9000
	Rack objekt
	Rack_SSAB
	Attributes
	Driver

	Ssab_RemoteRack
	Attributes

	Di cards
	Ssab_BaseDiCard
	Ssab_DI32D

	Do cards
	Ssab_BaseDoCard
	Ssab_DO32KTS
	Ssab_DO32KTS_Stall

	Ai cards
	Ssab_BaseACard
	Ssab_AI8uP
	Ssab_AI16uP
	Ssab_AI32uP
	Ssab_AI16uP_Logger

	Ao cards
	Ssab_AO16uP
	Ssab_AO8uP
	Ssab_AO8uPL

	Co cards
	Ssab_CO4uP

	Profibus
	The Profibus configuator
	Address
	SlaveGsdData
	UserPrmData
	Module

	Specify the data area
	Digital inputs
	Analog inputs
	Digital outputs
	Analog outputs
	Complex dataareas

	Driver
	Agent object
	Pb_Profiboard

	Slave objects
	Pb_Dp_Slave
	ABB_ACS_Pb_Slave
	Siemens_ET200S_IM151
	Siemens ET200M_IM153

	Module objects
	Pb_Module
	ABB_ACS_PPO5
	Siemens_ET200S_Ai2
	Siemens_ET200S_Ao2
	Siemens_ET200M_Di4
	Siemens_ET200M_Di2
	Siemens_ET200M_Do4
	Siemens_ET200M_Do2

	Profinet
	The profinet configurator
	Network Settings
	DeviceName
	IP Address
	Subnet mask
	MAC Address
	SendClock
	ReductionRatio
	Phase

	ByteOrdering
	DeviceInfo
	Device
	DAP
	Slot1 - Slotx
	ModuleType
	ModuleClass
	ModuleInfo
	Subslot X

	Profinet viewer
	Agent object
	PnControllerSoftingPNAK

	Device objects
	PnDevice
	Siemens_ET200S_PnDevice
	Siemens_ET200M_PnDevice
	Sinamics_G120_PnDevice
	ABB_ACS_PnDevice

	Module objects
	PnModule
	BaseFcPPO3PnModule
	Sinamics_Tgm1_PnModule
	Siemens_Ai2_PnModule
	Siemens_Ao2_PnModule
	Siemens_Di4_PnModule
	Siemens_Di2_PnModule
	Siemens_Do4_PnModule
	Siemens_Do2_PnModule
	Siemens_Do32_PnModule
	Siemens_D16_PnModule
	Siemens_Do8_PnModule
	Siemens_Di32_PnModule
	Siemens_Di16_PnModule
	Siemens_Di8_PnModule
	Siemens_Dx16_PnModule
	Siemens_Ai8_PnModule
	Siemens_Ao8_PnModule
	Siemens_Ai4_PnModule
	Siemens_Ao4_PnModule

	Ethernet Powerlink
	What Powerlink does
	Main features
	Powerlink facts
	ProviewR as a MN
	openCONFIGURATOR (CDC-file)

	ProviewR as a CN
	Communication between two ProviewR nodes

	Modbus TCP Client
	Configuration of a device
	Master
	Slaves
	Modules

	Specify the data area
	Example

	Master object
	Modbus_Master

	Slave objects
	Modbus_TCP_Slave

	Module objects
	Modbus_Module

	Modbus TCP Server
	Data areas
	Unit id
	Port

	Hilscher cifX
	SYCON.net configuration
	cifX driver configuration
	ProviewR configuration

	MotionControl USB I/O
	Driver
	Rack object
	MotonControl_USB

	Card object
	MotionControl_USBIO

	Channels
	Ai configuration
	Ao configuration

	Link file

	Velleman K8055
	Agent object
	USB_Agent

	Rack object
	Velleman_K8055

	Card object
	Velleman_K8055_Board

	Channels
	Ai configuration
	Ao configuration

	Link file

	Arduino Uno
	Initialization of the Arduino board
	USB port baud rate
	I/O Configuration
	Rack object
	Arduino_USB

	Card object
	Arduino_Uno

	Channels

	GPIO
	OneWire
	OneWire_AiDevice
	Maxim_DS18B20

	Adaption of I/O systems
	Overview
	Levels
	Area objects
	I/O objects
	Processes
	Framework
	Methods

	Framework
	Create I/O objects
	Flags
	Attributes
	Description
	Process
	ThreadObject

	Method objects
	Agents
	Racks
	Cards
	Connect-method for a ThreadObject

	Methods
	Local data structure
	Agent methods
	IoAgentInit
	IoAgentClose
	IoAgentRead
	IoAgentWrite
	IoAgentSwap

	Rack methods
	IoRackInit
	IoRackClose
	IoRackRead
	IoRackWrite
	IoRackSwap

	Card methods
	IoCardInit
	IoCardClose
	IoCardRead
	IoCardWrite
	IoCardSwap

	Method registration
	Class registration
	Module in ProviewR base system
	Project

	Example of rack methods
	Example of the methods of a digital input card
	Example of the methods of a digital output card

	Step by step description
	Attach to a project
	Create classes
	Create a class volume
	Open the classvolume
	Create a rack class
	Create a card class
	Build the classvolume

	Install the driver

	Write methods
	Class registration
	Makefile
	Build options
	Configure the node hierarchy

